2024-01-26 23:02:48 -06:00
|
|
|
|
#let m(math) = align(center)[$#math$]
|
|
|
|
|
#let pgbreakmsg = align(center, text(blue, weight: "black", size: 1.5em)[See Next Page\ ↓])
|
|
|
|
|
|
|
|
|
|
#let solve(work, solution) = align(
|
|
|
|
|
center,
|
|
|
|
|
)[
|
|
|
|
|
#let solution = align(center, block(
|
|
|
|
|
inset: 5pt,
|
|
|
|
|
stroke: blue + .3pt,
|
|
|
|
|
fill: rgb(0, 149, 255, 15%),
|
|
|
|
|
radius: 4pt,
|
|
|
|
|
)[#align(left)[#solution]])
|
|
|
|
|
|
|
|
|
|
#if work == [] [
|
|
|
|
|
#solution
|
|
|
|
|
] else [
|
|
|
|
|
#block(inset: 6pt, radius: 4pt, stroke: luma(50%) + .5pt, fill: luma(90%))[
|
|
|
|
|
#align(left, text(font: "Liberation Sans", size: .85em, work))
|
|
|
|
|
#solution
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#let problem-header(number, points) = [== Problem #number. #text(weight: "regular")[[#points
|
|
|
|
|
points]]]
|
|
|
|
|
|
|
|
|
|
#let problem(number, points, body) = [
|
|
|
|
|
== Problem #number. #text(weight: "regular")[[#points points]]
|
|
|
|
|
#body
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#set page(margin: (x: .4in, y: .4in))
|
|
|
|
|
#set table(align: center)
|
|
|
|
|
|
|
|
|
|
_*Price Hiller*_
|
|
|
|
|
#v(-.8em)
|
|
|
|
|
_*zfp106*_
|
|
|
|
|
#v(-.8em)
|
|
|
|
|
Homework Assignment 1
|
|
|
|
|
#v(-.8em)
|
|
|
|
|
CS 2233
|
|
|
|
|
#v(-.8em)
|
|
|
|
|
Section 001
|
|
|
|
|
|
|
|
|
|
#align(
|
|
|
|
|
center,
|
|
|
|
|
block(
|
|
|
|
|
inset: 6pt,
|
|
|
|
|
radius: 4pt,
|
|
|
|
|
stroke: luma(50%) + .5pt,
|
|
|
|
|
fill: luma(90%),
|
2024-01-26 23:18:31 -06:00
|
|
|
|
)[If you are interested in viewing the source code of this document, you can do so
|
|
|
|
|
by clicking
|
2024-01-26 23:02:48 -06:00
|
|
|
|
#text(
|
|
|
|
|
blue,
|
|
|
|
|
link(
|
|
|
|
|
"https://gitlab.orion-technologies.io/philler/college/-/blob/Development/Spring-2023/CS-2233/Assignment-1/Solution.typ?ref_type=heads",
|
|
|
|
|
"here",
|
|
|
|
|
),
|
2024-01-26 23:18:31 -06:00
|
|
|
|
). This document was written in Typst and a bit of infinite _withering_ pain in
|
|
|
|
|
Neovim, a Vim derivative. Here's to hoping everything below is correct.],
|
2024-01-26 23:02:48 -06:00
|
|
|
|
)
|
|
|
|
|
= Problems
|
|
|
|
|
|
|
|
|
|
#problem(
|
|
|
|
|
1,
|
|
|
|
|
10,
|
|
|
|
|
)[
|
|
|
|
|
- Complete all participation activities in zyBook sections: 1.1, 1.2, 1.3, 1.4,
|
|
|
|
|
1.5.
|
|
|
|
|
#solve[][Done]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#problem(
|
|
|
|
|
2,
|
|
|
|
|
15,
|
|
|
|
|
)[
|
|
|
|
|
Let $p$ denote "You passed CS 2233".
|
|
|
|
|
|
|
|
|
|
Let $q$ denote "You passed CS 3333".
|
|
|
|
|
|
|
|
|
|
Let $r$ denote "You can register for CS 3343".
|
|
|
|
|
|
|
|
|
|
Let $s$ denote "You understand propsitional logic".
|
|
|
|
|
|
|
|
|
|
Use $p$, $q$, $r$, and $s$, to create propositions representing the following
|
|
|
|
|
statements.
|
|
|
|
|
|
|
|
|
|
a. [5 points] You did not pass CS 2233, but you understand propositional logic.
|
|
|
|
|
|
|
|
|
|
#solve[
|
|
|
|
|
This can be alternatively expressed as
|
|
|
|
|
#align(
|
|
|
|
|
center,
|
|
|
|
|
)["You did not pass CS 2233 and you understand propositional logic"]
|
|
|
|
|
As the "but" in the statement is _not_ an exclusion, it is a conjunction in
|
|
|
|
|
typical english language.
|
|
|
|
|
][$¬p ∧ s$]
|
|
|
|
|
|
|
|
|
|
b. [5 points] You cannot register for CS 3343 only if you have not passed both
|
|
|
|
|
CS 2233 and CS 3333
|
|
|
|
|
|
|
|
|
|
#solve[
|
|
|
|
|
This can be alternatively expressed as
|
|
|
|
|
#align(
|
|
|
|
|
center,
|
|
|
|
|
)["If you can register for CS 3343 then that implies you have passed CS 2233 and
|
|
|
|
|
CS 3333"]
|
|
|
|
|
Which can also be rewritten as
|
|
|
|
|
#align(
|
|
|
|
|
center,
|
|
|
|
|
)["If you have passed CS 2233 and CS 3333 then you can register for CS 3343"]
|
|
|
|
|
|
|
|
|
|
In the original statement, we're negating both sides, thus $¬r$ and $¬p ∧ ¬q$ which
|
|
|
|
|
can be written as:
|
|
|
|
|
][$¬r → ¬(p ∧ q)$]
|
|
|
|
|
|
|
|
|
|
#pgbreakmsg
|
|
|
|
|
#pagebreak()
|
|
|
|
|
c. [5 points] If you can register for CS 3343, then you have passed CS 2233 and
|
|
|
|
|
you understand propositional logic if you passed CS 2233\
|
|
|
|
|
|
|
|
|
|
#solve[
|
|
|
|
|
So this can be more easily understood by "solving" the latter half of the
|
|
|
|
|
statement first.
|
|
|
|
|
|
|
|
|
|
Expressing "You understand propositional logic if you passed CS 2233" logically
|
|
|
|
|
would be:
|
2024-01-26 23:18:31 -06:00
|
|
|
|
#m[s → p]
|
2024-01-26 23:02:48 -06:00
|
|
|
|
|
|
|
|
|
Now slightly rewriting the statement with our logic embedded, "If you can
|
2024-01-26 23:18:31 -06:00
|
|
|
|
register for CS 3343, then you have passed CS 2233 and $(s → p)$".
|
2024-01-26 23:02:48 -06:00
|
|
|
|
|
2024-01-26 23:18:31 -06:00
|
|
|
|
Then further refining the statement: "If you can register for CS 3343 then $p ∧ (s → p)$.
|
2024-01-26 23:02:48 -06:00
|
|
|
|
|
2024-01-26 23:18:31 -06:00
|
|
|
|
And with a final refinement: $r → p ∧ (s → p)$
|
2024-01-26 23:02:48 -06:00
|
|
|
|
|
|
|
|
|
Thus the final expression logically would be:
|
2024-01-26 23:18:31 -06:00
|
|
|
|
][$r → (p ∧ (s → p))$]
|
2024-01-26 23:02:48 -06:00
|
|
|
|
]
|
|
|
|
|
#problem(
|
|
|
|
|
3,
|
|
|
|
|
40,
|
|
|
|
|
)[
|
|
|
|
|
Show that $(¬q ∧ (p ∨ p)) → ¬q$ is a tautology, i.e. $(¬q ∧ (p ∨ p)) → ¬q ≡ T$
|
|
|
|
|
|
|
|
|
|
a. [10 points] By creating a truth table
|
|
|
|
|
|
|
|
|
|
// | q | p | ¬q | (p ∨ p) | (¬q ∧ (p ∨ p)) | (¬q ∧ (p ∨ p)) → ¬q |
|
|
|
|
|
// |---|---|----|---------|----------------|---------------------|
|
|
|
|
|
// | T | T | F | T | F | T |
|
|
|
|
|
// | T | F | F | F | F | T |
|
|
|
|
|
// | F | T | T | T | T | T |
|
|
|
|
|
// | F | F | T | F | F | T |
|
|
|
|
|
#solve[
|
|
|
|
|
Notice that the furthest right column only has true values, thus the above
|
|
|
|
|
proposition is a
|
|
|
|
|
_tautology_ and is always _True_
|
|
|
|
|
][
|
|
|
|
|
#table(
|
|
|
|
|
columns: 6,
|
|
|
|
|
[q],
|
|
|
|
|
[p],
|
|
|
|
|
[¬q],
|
|
|
|
|
[(p ∨ p)],
|
|
|
|
|
[(¬q ∧ (p ∨ p))],
|
|
|
|
|
[(¬q ∧ (p ∨ p)) → ¬q],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
b. [10 points] By creating a sequence of logical equivalences and annotating
|
|
|
|
|
each step
|
|
|
|
|
|
|
|
|
|
#solve[][
|
|
|
|
|
#grid(columns: 2, row-gutter: .5em, column-gutter: 6em)[
|
|
|
|
|
1. $¬q ∧ (p ∨ p) → ¬q$
|
|
|
|
|
][Starting Proposition][
|
|
|
|
|
2. $(¬q ∧ p) → ¬q ∵ (z ∨ z) ≡ p$
|
|
|
|
|
][Idempotent Law][
|
|
|
|
|
3. $¬(¬q ∧ p) ∨ ¬q ∵ y → z ≡ ¬y ∨ q$
|
|
|
|
|
][Conditional Identitify][
|
|
|
|
|
4. $(¬¬q ∨ ¬p) ∨ q ∵ ¬(z ∧ y) ≡ (¬z ∨ ¬q) $
|
|
|
|
|
][De Morgan's laws][
|
|
|
|
|
5. $(q ∨ ¬p) ∨ ¬q ∵ ¬¬z ≡ z$
|
|
|
|
|
][Double Negation laws][
|
|
|
|
|
6. $(q ∨ ¬q) ∨ ¬p ∵ (z ∨ y) ∨ x ≡ z ∨ (y ∨ x)$
|
|
|
|
|
][Associative Laws][
|
|
|
|
|
7. $T ∨ ¬p ∵ z ∨ ¬z ≡ T ∴ (q ∨ ¬q) ∨ ¬p ≡ T ∨ ¬p$
|
|
|
|
|
][Complement Laws][
|
|
|
|
|
8. $T ∵ T ∨ z ≡ T$
|
|
|
|
|
][Domination Laws]
|
|
|
|
|
]
|
|
|
|
|
#pgbreakmsg
|
|
|
|
|
#pagebreak(weak: true)
|
|
|
|
|
|
|
|
|
|
Show that $¬q → (p ∧ r) ≡ (¬q → r) ∧ (q ∨ p)$
|
|
|
|
|
|
|
|
|
|
c. [10 points] By creating a truth table
|
|
|
|
|
|
|
|
|
|
// * ¬q → (p ∧ r)
|
|
|
|
|
//
|
|
|
|
|
// | $q$ | $p$ | $r$ | $¬q$ | $(p ∧ r)$ | $¬q → (p ∧ r)$ |
|
|
|
|
|
// |-----|-----|-----|------|-----------|----------------|
|
|
|
|
|
// | T | T | T | F | T | T |
|
|
|
|
|
// | T | T | F | F | F | T |
|
|
|
|
|
// | T | F | T | F | F | T |
|
|
|
|
|
// | T | F | F | F | F | T |
|
|
|
|
|
// | F | T | T | T | T | T |
|
|
|
|
|
// | F | T | F | T | F | F |
|
|
|
|
|
// | F | F | T | T | F | F |
|
|
|
|
|
// | F | F | F | T | F | F |
|
|
|
|
|
//
|
|
|
|
|
//
|
|
|
|
|
// * (¬q → r) ∧ (q ∨ p)
|
|
|
|
|
//
|
|
|
|
|
// | $q$ | $p$ | $r$ | $¬q$ | $¬q → r$ | $q ∨ p$ | $(¬q → r) ∧ (q ∨ p)$ |
|
|
|
|
|
// |-----|-----|-----|------|----------|---------|----------------------|
|
|
|
|
|
// | T | T | T | F | T | T | T |
|
|
|
|
|
// | T | T | F | F | T | T | T |
|
|
|
|
|
// | T | F | T | F | T | T | T |
|
|
|
|
|
// | T | F | F | F | T | T | T |
|
|
|
|
|
// | F | T | T | T | T | T | T |
|
|
|
|
|
// | F | T | F | T | F | T | F |
|
|
|
|
|
// | F | F | T | T | T | F | F |
|
|
|
|
|
// | F | F | F | T | T | F | F |
|
|
|
|
|
#solve[
|
2024-01-26 23:30:55 -06:00
|
|
|
|
Notice that both truth tables have equivalent values in their furthest right
|
|
|
|
|
columns. As a result of this, the proposition $¬q → (p ∧ r) ≡ (¬q → r) ∧ (q ∨ p)$ must
|
|
|
|
|
be _True_.
|
2024-01-26 23:02:48 -06:00
|
|
|
|
][
|
|
|
|
|
#table(columns: 2, stroke: none, [Truth table for *$¬q → (p ∧ r)$*
|
|
|
|
|
#table(
|
|
|
|
|
columns: 6,
|
|
|
|
|
[$q$],
|
|
|
|
|
[$p$],
|
|
|
|
|
[$r$],
|
|
|
|
|
[$¬q$],
|
|
|
|
|
[$(p ∧ r)$],
|
|
|
|
|
[$¬q → (p ∧ r)$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
)], [Truth table for *$(¬q → r) ∧ (q ∨ p)$*
|
|
|
|
|
#table(
|
|
|
|
|
columns: 7,
|
|
|
|
|
[$q$],
|
|
|
|
|
[$p$],
|
|
|
|
|
[$r$],
|
|
|
|
|
[$¬q$],
|
|
|
|
|
[$¬q → r$],
|
|
|
|
|
[$q ∨ p$],
|
|
|
|
|
[$(¬q → r) ∧ (q ∨ p)$ ],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
)])
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
d. [10 points] By creating a sequence of logical equivalences and annotating
|
|
|
|
|
each step
|
|
|
|
|
#solve[Notice by step three, both logical sequences are equivalent.][
|
2024-01-26 23:18:31 -06:00
|
|
|
|
#table(columns: 2, align: left, [
|
|
|
|
|
#align(center)[*$¬q → (p ∧ r)$*]
|
2024-01-26 23:02:48 -06:00
|
|
|
|
#grid(columns: 2, row-gutter: .5em, column-gutter: 1em)[
|
|
|
|
|
1. $¬¬q ∨ (p ∧ r)$
|
|
|
|
|
][Conditional Identities][
|
|
|
|
|
2. $q ∨ (p ∧ r)$
|
|
|
|
|
][Double Negation Law][
|
|
|
|
|
3. $(q ∨ p) ∧ (q ∨ r)$
|
|
|
|
|
][Distributive Laws]
|
2024-01-26 23:18:31 -06:00
|
|
|
|
], [#align(center)[*$(¬q → r) ∧ (q ∨ p)$*]
|
2024-01-26 23:02:48 -06:00
|
|
|
|
#grid(columns: 2, row-gutter: .5em, column-gutter: 1em)[
|
|
|
|
|
1. $(¬¬q ∨ r) ∧ (q ∨ p)$
|
|
|
|
|
][Conditional Identities][
|
|
|
|
|
2. $(q ∨ r) ∧ (q ∨ p)$
|
|
|
|
|
][Double Negation Law][
|
|
|
|
|
3. $(q ∨ p) ∧ (q ∨ r)$
|
|
|
|
|
][Commutative Laws]
|
|
|
|
|
])
|
|
|
|
|
Thus $¬q → (p ∧ r) ≡ (¬q → r) ∧ (q ∨ p)$
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#pgbreakmsg
|
|
|
|
|
#pagebreak()
|
|
|
|
|
#problem(
|
|
|
|
|
4,
|
|
|
|
|
20,
|
|
|
|
|
)[
|
|
|
|
|
a. [10 points] Show that the $∨$ operator is associative by creating a truth
|
|
|
|
|
table showing that $p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r$
|
|
|
|
|
|
|
|
|
|
#solve[Notice that the furthest right columns of both tables are equivalent, therefore
|
|
|
|
|
the $∨$ operator is associative][
|
|
|
|
|
#table(columns: 2, stroke: none, [Truth table for *$p ∨ (q ∨ r)$*
|
|
|
|
|
#table(
|
|
|
|
|
columns: 5,
|
|
|
|
|
[$q$],
|
|
|
|
|
[$p$],
|
|
|
|
|
[$r$],
|
|
|
|
|
[$(q ∨ r)$],
|
|
|
|
|
[$p ∨ (q ∨ r)$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
)], [Truth table for *$(p ∨ q) ∨ r$*
|
|
|
|
|
#table(
|
|
|
|
|
columns: 5,
|
|
|
|
|
[$q$],
|
|
|
|
|
[$p$],
|
|
|
|
|
[$r$],
|
|
|
|
|
[$(p ∨ q)$],
|
|
|
|
|
[$(p ∨ q) ∨ r$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
)])
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
b. [10 points] The NOR operator $↓$ is the negation of a disjunction: $p ↓ q ≡ ¬(p ∨ q)$.
|
|
|
|
|
Its truth table is:
|
|
|
|
|
|
|
|
|
|
#table(
|
|
|
|
|
columns: 3,
|
|
|
|
|
[$p$],
|
|
|
|
|
[$q$],
|
|
|
|
|
[$p ↓ q$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
Show that The NOR operator is not associative by creating a truth table showing
|
|
|
|
|
that it is not the case that *$p ↓ (q ↓ r) ≡ (p ↓ q) ↓ r$*. In other words,
|
|
|
|
|
create a truth table showing that *$(p ↓ (q ↓ r)) ↔ ((p ↓ q) ↓ r)$* is not a
|
|
|
|
|
tautology.
|
|
|
|
|
|
|
|
|
|
#solve[Notice that the two tables' outputs are different in the furthest righthand
|
|
|
|
|
column. If the NOR were associative, the furthest right columns of both tables
|
|
|
|
|
would be identical. Since this is not the case, the NOR operator isn't
|
|
|
|
|
associative.][#table(columns: 2, stroke: none, [Truth table for *$p ↓ (q ↓ r)$*
|
|
|
|
|
#table(
|
|
|
|
|
columns: 5,
|
|
|
|
|
[$q$],
|
|
|
|
|
[$p$],
|
|
|
|
|
[$r$],
|
|
|
|
|
[$(q ↓ r)$],
|
|
|
|
|
[$p ↓ (q ↓ r)$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
)], [Truth table for *$(p ↓ q) ↓ r$*
|
|
|
|
|
#table(
|
|
|
|
|
columns: 5,
|
|
|
|
|
[$q$],
|
|
|
|
|
[$p$],
|
|
|
|
|
[$r$],
|
|
|
|
|
[$(p ↓ q)$],
|
|
|
|
|
[$(p ↓ q) ↓ r$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$F$],
|
|
|
|
|
[$T$],
|
|
|
|
|
[$F$],
|
|
|
|
|
)])]
|
|
|
|
|
]
|