398 lines
9.2 KiB
Plaintext
398 lines
9.2 KiB
Plaintext
|
#show link: set text(blue)
|
|||
|
#set text(font: "Calibri")
|
|||
|
#show raw: set text(font: "Fira Code")
|
|||
|
#set table.cell(breakable: false)
|
|||
|
#set table(stroke: (x, y) => (
|
|||
|
left: if x > 0 {
|
|||
|
.1pt
|
|||
|
},
|
|||
|
top: if y == 1 {
|
|||
|
0.5pt
|
|||
|
} else if y > 1 {
|
|||
|
0.1pt
|
|||
|
},
|
|||
|
))
|
|||
|
|
|||
|
|
|||
|
#set math.mat(delim: "[")
|
|||
|
#set page(margin: (x: .5in, y: .5in))
|
|||
|
#let solve(solution) = {
|
|||
|
block(
|
|||
|
inset: 10pt,
|
|||
|
stroke: blue + .3pt,
|
|||
|
fill: rgb(0, 149, 255, 15%),
|
|||
|
radius: 4pt,
|
|||
|
)[#solution]
|
|||
|
}
|
|||
|
|
|||
|
#let solvein(solution) = {
|
|||
|
let outset = 3pt
|
|||
|
h(outset)
|
|||
|
box(
|
|||
|
outset: outset,
|
|||
|
stroke: blue + .3pt,
|
|||
|
fill: rgb(0, 149, 255, 15%),
|
|||
|
radius: 4pt,
|
|||
|
)[#solution]
|
|||
|
}
|
|||
|
|
|||
|
#let note(content) = {
|
|||
|
block(
|
|||
|
outset: 5pt,
|
|||
|
inset: 10pt,
|
|||
|
stroke: luma(20%) + .3pt,
|
|||
|
fill: luma(95%),
|
|||
|
radius: 4pt,
|
|||
|
)[#content]
|
|||
|
}
|
|||
|
|
|||
|
#let notein(content) = {
|
|||
|
let outset = 3pt
|
|||
|
h(outset)
|
|||
|
box(
|
|||
|
outset: outset,
|
|||
|
stroke: luma(20%) + .3pt,
|
|||
|
fill: luma(95%),
|
|||
|
radius: 4pt,
|
|||
|
)[#content]
|
|||
|
}
|
|||
|
|
|||
|
#align(center)[
|
|||
|
= CS 3333 Mathematical Foundations
|
|||
|
Homework 4 (100 points)\
|
|||
|
#underline[Price Hiller] | #underline[zfp106]
|
|||
|
]
|
|||
|
#line(length: 100%, stroke: .25pt)
|
|||
|
|
|||
|
*Submission:*\
|
|||
|
Same as HW1.
|
|||
|
|
|||
|
*Questions*\
|
|||
|
Please write down the major intermediate steps.
|
|||
|
|
|||
|
1. Calculate the sum of two matrices if it is defined. (10 pts)
|
|||
|
|
|||
|
#enum(
|
|||
|
numbering: "(a)",
|
|||
|
tight: false,
|
|||
|
number-align: start + top,
|
|||
|
[
|
|||
|
(5 pts)
|
|||
|
$mat(
|
|||
|
5, 7, -2;
|
|||
|
6, 0, 5;
|
|||
|
0, 4, 1;
|
|||
|
) + mat(
|
|||
|
3, 0, 4;
|
|||
|
-5, -6, 8;
|
|||
|
7, 9, 0
|
|||
|
) =$
|
|||
|
|
|||
|
#note[
|
|||
|
$mat(
|
|||
|
5, 7, -2;
|
|||
|
6, 0, 5;
|
|||
|
0, 4, 1;
|
|||
|
) + mat(
|
|||
|
3, 0, 4;
|
|||
|
-5, -6, 8;
|
|||
|
7, 9, 0
|
|||
|
) &= mat(5 + 3, 7 + 0, 4 + (-2);6 + (-5), 0 + (-6), 5 + 8; 0 + 7, 4 + 9, 1 + 0;)\
|
|||
|
|
|||
|
&= #solve[$mat(8, 7, 2; 1, -6, 13; 7, 13, 1;)$]$
|
|||
|
]
|
|||
|
],
|
|||
|
[
|
|||
|
(5 pts)
|
|||
|
$mat(
|
|||
|
2, 0, 7;
|
|||
|
9, 5, 6;
|
|||
|
8, 4, 0;
|
|||
|
) + mat(
|
|||
|
6, 1;
|
|||
|
4, 7;
|
|||
|
0, 5;
|
|||
|
) =$
|
|||
|
#solve[The addition is *not defined*. The first matrix is of order $3×3$ whereas the order of the second matrix is of order $3×2$.]
|
|||
|
],
|
|||
|
)
|
|||
|
|
|||
|
2. Calculate $A*B$ if it is defined. (25 pts)\
|
|||
|
#enum(
|
|||
|
numbering: "(a)",
|
|||
|
tight: false,
|
|||
|
number-align: start + top,
|
|||
|
[
|
|||
|
(5 pts) $A = 8$, $B = mat(
|
|||
|
7, 0, -2, 4;
|
|||
|
-6, 1, -3, 5;
|
|||
|
)$
|
|||
|
|
|||
|
#note[$
|
|||
|
"AB" &= 8 mat(
|
|||
|
7, 0, -2, 4;
|
|||
|
-6, 1, -3, 5;
|
|||
|
)\
|
|||
|
"AB" &= mat(
|
|||
|
8 ⋅ 7, 8 ⋅ 0, 8 ⋅ -2, 8 ⋅ 4;
|
|||
|
8 ⋅ -6, 8 ⋅ 1, 8 ⋅ -3, 8 ⋅ 5;
|
|||
|
)\
|
|||
|
"AB" &= #solve[$mat(
|
|||
|
56&, 0&, -16&, 32&;
|
|||
|
-48&, 8&, -24&, 40&;
|
|||
|
)$]
|
|||
|
$]
|
|||
|
],
|
|||
|
[
|
|||
|
(10 pts) $A = mat(7, 0, -2, 4; -6, 1, -3, 5;)$ $B = mat(-1, 6; -4, 4; 5, 8; 0, -7;)$
|
|||
|
#note[
|
|||
|
$
|
|||
|
"AB" &= mat(7, 0, -2, 4; -6, 1, -3, 5;) × mat(-1, 6; -4, 4; 5, 8; 0, -7;)\
|
|||
|
"AB" &= mat(
|
|||
|
((7 * -1) + (0 * -4) + (-2 * 5) + (4 * 0)), ((7 * 6) + (0 * 4) + (-2 * 8) + (4 * -7));
|
|||
|
((-6 * -1) + (1 * -4) + (-3 * 5) + (5 * 0)), ((-6 * 6) + (1 * 4) + (-3 * 8) + (5 * -7));
|
|||
|
)\
|
|||
|
"AB" &= #solve[$mat(
|
|||
|
-17&, -2&;
|
|||
|
-13&, -91&;
|
|||
|
)$]
|
|||
|
$
|
|||
|
]
|
|||
|
],
|
|||
|
[
|
|||
|
(10 pts) $A = mat(1, 0, 0; 0, -1, -1; -1, 1, 0;)$ $B = mat(1, 1, -1; 0, -1, 1; 1, 1, 0;)$
|
|||
|
|
|||
|
#note[
|
|||
|
$
|
|||
|
"AB" &= mat(1, 0, 0; 0, -1, -1; -1, 1, 0;) × mat(1, 1, -1; 0, -1, 1; 1, 1, 0;)\
|
|||
|
"AB" &= mat(
|
|||
|
((1 * 1) + (0 * 0) + (0 * 1)), ((1 * 1) + (0 * -1) + (0 * 1)), ((1 * -1) + (0 * 1) + (0 * 0));
|
|||
|
((0 * 1) + (-1 * 0) + (-1 * 1)), ((0 * 1) + (-1 * -1) + (-1 * 1)), ((0 * -1) + (-1 * 1) + (-1 * 0));
|
|||
|
((-1 * 1) + (1 * 0) + (0 * 1)), ((-1 * 1) + (1 * -1) + (0 * 1)), ((-1 * -1) + (1 * 1) + (0 * 0))
|
|||
|
)\
|
|||
|
"AB" &= #solve[$mat(
|
|||
|
1&, 1&, -1&;
|
|||
|
-1, 0&, -1&;
|
|||
|
-1, -2&, 2&
|
|||
|
)$]\
|
|||
|
$
|
|||
|
]
|
|||
|
],
|
|||
|
)
|
|||
|
|
|||
|
3. Compute $"AB"$ and $"BA"$. Does $"AB" = "BA"$? (10 pts)
|
|||
|
|
|||
|
$A = mat(2, 2; 2, 1;)$ and $B = mat(1, 2; 1, 2;)$
|
|||
|
|
|||
|
#note[
|
|||
|
$
|
|||
|
"AB" &= mat(2, 2; 2, 1;) × mat(1, 2; 1, 2;)\
|
|||
|
"AB" &= mat(((2 * 1) + (2 * 1)), ((2 * 2) + (2 * 2)); ((2 * 1) + (1 * 1)), ((2 * 2) + (1 * 2));)\
|
|||
|
"AB" &= #solve[$mat(4, 8; 3, 6;)$]\
|
|||
|
$
|
|||
|
#align(center)[#line(length: 6cm)]
|
|||
|
$
|
|||
|
"BA" &= mat(1, 2; 1, 2;) × mat(2, 2; 2, 1;) \
|
|||
|
"BA" &= mat(((1 * 2) + (2 * 2)), ((1 * 2) + (2 * 1)); ((1 * 2) + (2 * 2)), ((1 * 2) + (2 * 1));)\
|
|||
|
"BA" &= #solve[$mat(6, 4; 6, 4;)$]\
|
|||
|
$
|
|||
|
|
|||
|
#solve[$"AB" ≠ "BA"$]
|
|||
|
]
|
|||
|
|
|||
|
4. Compute the transpose of matrix A (5 pts)
|
|||
|
|
|||
|
$A = mat(9, 2, 5; 1, 0, 4;)$
|
|||
|
|
|||
|
#solve[
|
|||
|
$
|
|||
|
A^t &= mat(9, 1; 2, 0; 5, 4)
|
|||
|
$
|
|||
|
]
|
|||
|
|
|||
|
#align(center)[#text(size: 2em)[#note[See next page]]]
|
|||
|
|
|||
|
5. #block(breakable: false)[Represent the following system of linear equations using matrices
|
|||
|
|
|||
|
$
|
|||
|
a_11x_1 + a_12x_2 + a_13x_3 + a_14x_4 &= b_1\
|
|||
|
a_21x_1 + a_22x_2 + a_23x_3 + a_24x_4 &= b_2\
|
|||
|
a_31x_1 + a_32x_2 + a_33x_3 + a_34x_4 &= b_3\
|
|||
|
a_41x_1 + a_42x_2 + a_43x_3 + a_44x_4 &= b_4
|
|||
|
$
|
|||
|
|
|||
|
The representation is $A*X = B$. What is matrices $A$, $X$, and $B$? (10 pts)
|
|||
|
|
|||
|
#align(center)[
|
|||
|
#solve[
|
|||
|
#table(
|
|||
|
stroke: (x, y) => (
|
|||
|
left: none,
|
|||
|
top: if y > 0 {
|
|||
|
.5pt
|
|||
|
},
|
|||
|
),
|
|||
|
columns: (auto, auto, auto, auto, auto),
|
|||
|
align: center + horizon,
|
|||
|
table.header([$A$], [], [$X$], [], [$B$]),
|
|||
|
[
|
|||
|
$
|
|||
|
mat(
|
|||
|
delim: "(",
|
|||
|
a_11, a_12, a_13, a_14;
|
|||
|
a_21, a_22, a_23, a_24;
|
|||
|
a_31, a_32, a_33, a_34;
|
|||
|
a_41, a_42, a_43, a_44;
|
|||
|
)
|
|||
|
$
|
|||
|
],
|
|||
|
[$⋅$],
|
|||
|
[
|
|||
|
$
|
|||
|
mat(delim: "(",
|
|||
|
x_1;
|
|||
|
x_2;
|
|||
|
x_3;
|
|||
|
x_4;
|
|||
|
)
|
|||
|
$
|
|||
|
],
|
|||
|
[$=$],
|
|||
|
[
|
|||
|
$
|
|||
|
mat(delim: "(",
|
|||
|
b_1;
|
|||
|
b_2;
|
|||
|
b_3;
|
|||
|
b_4;
|
|||
|
)
|
|||
|
$
|
|||
|
],
|
|||
|
)
|
|||
|
]
|
|||
|
]
|
|||
|
]
|
|||
|
|
|||
|
6. Show the adjacency matrix for the following graph. (20 pts)
|
|||
|
|
|||
|
#figure(
|
|||
|
image("./assets/graph.png", width: 60%),
|
|||
|
) <fig-graph>
|
|||
|
|
|||
|
#align(center)[
|
|||
|
#solve[
|
|||
|
#table(
|
|||
|
stroke: (x, y) => (
|
|||
|
left: if y > 0 {
|
|||
|
if x == 1 {
|
|||
|
0.5pt
|
|||
|
} else if x > 1 {
|
|||
|
.1pt
|
|||
|
}
|
|||
|
},
|
|||
|
top: if x > 0 {
|
|||
|
if y == 1 {
|
|||
|
0.5pt
|
|||
|
} else if y > 1 {
|
|||
|
.1pt
|
|||
|
}
|
|||
|
},
|
|||
|
),
|
|||
|
columns: (auto, auto, auto, auto, auto, auto, auto),
|
|||
|
fill: (x, y) => {
|
|||
|
if calc.odd(y) and y > 0 and x > 0 {
|
|||
|
color.hsl(200deg, 60%, 40%, 25%)
|
|||
|
} else {
|
|||
|
none
|
|||
|
}
|
|||
|
},
|
|||
|
inset: 3pt,
|
|||
|
[ ], [A], [B], [C], [D], [E], [F],
|
|||
|
[A], [1], [1], [0], [0], [1], [0],
|
|||
|
[B], [1], [1], [1], [1], [1], [0],
|
|||
|
[C], [0], [1], [1], [0], [1], [1],
|
|||
|
[D], [0], [1], [0], [1], [1], [0],
|
|||
|
[E], [1], [1], [1], [1], [1], [0],
|
|||
|
[F], [0], [0], [1], [0], [0], [1],
|
|||
|
)
|
|||
|
#notein[
|
|||
|
Sorry about the lack of _proper_ matrix notation. I had a hard time typesetting the row and column labels for matrices in particular in Typst :(. I have to wait on https://github.com/typst/typst/issues/445 to get resolved I guess.
|
|||
|
|
|||
|
#text(size: .9em)[_Arguably though, that table _is_ easier to read._]
|
|||
|
]
|
|||
|
]
|
|||
|
]
|
|||
|
|
|||
|
#align(center)[#text(size: 2em)[#note[See next page]]]
|
|||
|
|
|||
|
7. #block(breakable: false)[Compute the determinant of matrix $A$. (20 pts)
|
|||
|
$
|
|||
|
A = mat(
|
|||
|
6, 1, 4, 8;
|
|||
|
4, 2, 3, 2;
|
|||
|
4, 1, 2, 3;
|
|||
|
9, 7, 5, 6;
|
|||
|
)
|
|||
|
$
|
|||
|
#align(center)[
|
|||
|
#note[
|
|||
|
#align(left)[#note[
|
|||
|
$|A| = 6mat(
|
|||
|
2, 3, 2;
|
|||
|
1, 2, 3;
|
|||
|
7, 5, 6;
|
|||
|
) - 1mat(
|
|||
|
4, 3, 2;
|
|||
|
4, 2, 3;
|
|||
|
9, 5, 6;
|
|||
|
) + 4mat(
|
|||
|
4, 2, 2;
|
|||
|
4, 1, 3;
|
|||
|
9, 7, 6;
|
|||
|
) - 8mat(
|
|||
|
4, 2, 3;
|
|||
|
4, 1, 2;
|
|||
|
9, 7, 5;
|
|||
|
)$
|
|||
|
]]
|
|||
|
#align(left)[#note[
|
|||
|
#notein[The expanded values were found via *Sarrus' rule* for each $3 × 3$ matrix above.]
|
|||
|
$
|
|||
|
|A| &=\
|
|||
|
6&[
|
|||
|
(2 * 2 * 6) + (3 * 3 * 7) + (2 * 1 * 5) - (7 * 2 * 2) - (
|
|||
|
5 * 3 * 2
|
|||
|
) - (6 * 1 * 3)
|
|||
|
]\
|
|||
|
- 1&[
|
|||
|
(4 * 2 * 6) + (3 * 3 * 9) + (2 * 4 * 5) - (9 * 2 * 2) - (
|
|||
|
5 * 3 * 4
|
|||
|
) - (6 * 4 * 3)
|
|||
|
]\
|
|||
|
+ 4&[
|
|||
|
(4 * 1 * 6) + (2 * 3 * 9) + (2 * 4 * 7) - (9 * 1 * 2) - (
|
|||
|
7 * 3 * 4
|
|||
|
) - (6 * 4 * 2)
|
|||
|
]\
|
|||
|
- 8&[
|
|||
|
(4 * 1 * 5) + (2 * 2 * 9) + (3 * 4 * 7) - (9 * 1 * 3) - (
|
|||
|
7 * 2 * 4
|
|||
|
) - (5 * 4 * 2)
|
|||
|
]\
|
|||
|
$
|
|||
|
]]
|
|||
|
#align(left)[#note[
|
|||
|
$
|
|||
|
|A| &=
|
|||
|
6[21]
|
|||
|
- 1[1]
|
|||
|
+ 4[-16]
|
|||
|
- 8[17]\
|
|||
|
$
|
|||
|
]
|
|||
|
]
|
|||
|
#align(center)[#solve[-75]]
|
|||
|
]
|
|||
|
]
|
|||
|
]
|