cs-3333: add hw3

This commit is contained in:
Price Hiller 2024-10-01 20:51:39 -05:00
parent 63276157cf
commit 0334948053
Signed by: Price
GPG Key ID: C3FADDE7A8534BEB

View File

@ -0,0 +1,361 @@
#set page(margin: (x: .5in, y: .5in))
#let solvein(solution) = {
let outset = 3pt
h(outset)
box(
outset: outset,
stroke: blue + .3pt,
fill: rgb(0, 149, 255, 15%),
radius: 4pt,
)[#solution]
}
#let solve(content) = [
#align(
center,
block(
inset: 5pt,
stroke: blue + .3pt,
fill: rgb(0, 149, 255, 15%),
radius: 4pt,
)[#align(left)[#content]],
)
]
#let notein(content) = {
let outset = 3pt
h(outset)
box(
outset: outset,
stroke: luma(20%) + .3pt,
fill: luma(95%),
radius: 4pt,
)[#content]
}
#let note(content) = [
#align(
center,
block(
inset: 5pt,
stroke: luma(20%) + .3pt,
fill: luma(95%),
radius: 4pt,
)[#align(left)[#content]],
)
]
#align(center)[
= CS 3333 Mathematical Foundations
Homework 3 (100 points)\
#underline[Price Hiller] *|* #underline[zfp106]
]
#line(length: 100%, stroke: .25pt)
= Submission:
Same as HW1.
= Questions
Convert a number in a number system to another one. *Write down the intermediate steps of your calculations.*
+ Decimal numbers to binary numbers. (10 pts)
#enum(
numbering: "a.",
[
$157$
#notein[
$
(157)_10 &= 2 ⋅ 78 &+ #text(red)[1]\
78 &= 2 ⋅ 39 &+ #text(red)[0]\
39 &= 2 ⋅ 19 &+ #text(red)[1]\
19 &= 2 ⋅ 9 &+ #text(red)[1]\
9 &= 2 ⋅ 4 &+ #text(red)[1]\
4 &= 2 ⋅ 2 &+ #text(red)[0]\
2 &= 2 ⋅ 1 &+ #text(red)[0]\
1 &= 2 ⋅ 0 &+ #text(red)[1]
$
#solve[$(157)_10 = (10011101)_2$]
]
],
[
$39.25$
#notein[
#align(center)[#underline[Whole Number]]
$
(39)_10 &= 2 ⋅ 19 &+ #text(red)[1]\
19 &= 2 ⋅ 9 &+ #text(red)[1]\
9 &= 2 ⋅ 4 &+ #text(red)[1]\
4 &= 2 ⋅ 2 &+ #text(red)[0]\
2 &= 2 ⋅ 1 &+ #text(red)[0]\
1 &= 2 ⋅ 0 &+ #text(red)[1]
$
#align(center)[#underline[Fraction]]
$
.50 &= 0.25 ⋅ 2 #note[#text(red)[0]]\
1.00 &= 0.50 ⋅ 2 #note[#text(red)[1]]
$
#solve[$(39.25)_10 = (100111.01)_2$]
]
],
)
+ Binary numbers to decimal numbers. (10 pts)
#enum(
numbering: "a.",
[
$(10111010)_2$
#notein[
$
(1 ⋅ 2^7) + (0 ⋅ 2^6) + (1 ⋅ 2^5) + (1 ⋅ 2^4) + (1 ⋅ 2^3) + (0 ⋅ 2^2) + (1 ⋅ 2^1) + (0 ⋅ 2^0) = #solve[$(186)_10$]
$
]
],
[
$(1101.011)_2$
#notein[
$
(1 ⋅ 2^3) + (1 ⋅ 2^2) + (0 ⋅ 2^1) + (1 ⋅ 2^0) + (0 ⋅ 2^-1) + ( 1 ⋅ 2^-2) + (1 ⋅ 2^-3) = #solve[$(13.375)_10$]
$
]
],
)
+ Octal integers to binary numbers. (10 pts)
#enum(
numbering: "a.",
[
$(527)_8$
#notein[
#table(
columns: (auto, auto, auto, auto),
[*Octal*], [$5$], [$2$], [$7$],
[*Binary*], [$101$], [$010$], [$111$],
)
#solve[$(527)_8 = (101010111)_2$]
]
],
[
$(4361)_8$
#notein[
#table(
columns: (auto, auto, auto, auto, auto),
[*Octal*], [$4$], [$3$], [$6$], [$1$],
[*Binary*], [$100$], [$011$], [$110$], [$001$],
)
#solve[$(4361)_8 = (100011110001)_2$]
]
],
)
+ Octal integers to decimal numbers. (10 pts)
#enum(
numbering: "a.",
[
$(527)_8$
#notein[
$
(5 ⋅ 8^2) + (2 ⋅ 8^1) + (7 ⋅ 8^0) = #solve[$(343)_10$]
$
]
],
[
$(4361)_8$
#notein[
$
(4 ⋅ 8^3) + (3 ⋅ 8^2) + (6 ⋅ 8^1) + (1 ⋅ 8^0) = #solve[$(2289)_10$]
$
]
],
)
+ Binary numbers to octal numbers. (10 pts)
#enum(
numbering: "a.",
[
$(10 110 110)_2$
#notein[
#table(
columns: (auto, auto, auto, auto),
[*Binary*], [$#text(red)[0]10$], [$110$], [$110$],
[*Octal*], [$2$], [$6$], [$6$],
)
#solve[$(10 110 110)_2 = (266)_8$]
]
],
[
$(11 110.011)_2$
#notein[
#table(
columns: (auto, auto, auto, auto),
[*Binary*], [$#text(red)[0]11$], [$110$], [$011$],
[*Octal*], [$3$], [$6$], [$3$],
)
#solve[$(11 110.011)_2 = (36.3)_8$]
]
],
)
+ Hexadecimal integers to binary numbers. (10 pts)
#enum(
numbering: "a.",
[
(F$6$A$)_16$
#notein[
#table(
columns: (auto, auto, auto, auto),
[*Hexadecimal*], [F], [$6$], [A],
[*Binary*], [$1111$], [$0110$], [$1010$],
)
#solve[(F6A$)_16 = (1111 0110 1010)_2$]
]
],
[
(D$0$EB$)_16$
#notein[
#table(
columns: (auto, auto, auto, auto, auto),
[*Hexadecimal*], [D], [$0$], [E], [B],
[*Binary*], [$1101$], [$0000$], [$1110$], [$1011$],
)
#solve[(D$0$EB$)_16 = (1101 0000 1110 1011)_2$]
]
],
)
+ Hexadecimal integers to decimal numbers. (10 pts)
#enum(
numbering: "a.",
[
(F6A$)_16$
#notein[
$
(15 ⋅ 16^2) + (6 ⋅ 16^1) + (10 ⋅ 16^0) = #solve[$(3946)_10$]
$
]
],
[
(D0EB$)_16$
#notein[
$
(13 ⋅ 16^3) + (0 ⋅ 16^2) + (14 ⋅ 16^1) + (11 ⋅ 16^0) = #solve[$(53483)_10$]
$
]
],
)
+ Binary numbers to hexadecimal numbers. (10 pts)
#enum(
numbering: "a.",
[
$(10 1101. 011)_2$
#notein[
#table(
columns: (auto, auto, auto, auto),
[*Binary*], [$#text(red)[00]10$], [$1101$], [$011#text(red)[0]$],
[*Hexadecimal*], [$2$], [D], [$6$],
)
#solve[$(10 1101. 011)_2 = (2$D$.6)_16$]
]
],
[
$(1 1011 1101)_2$
#notein[
#table(
columns: (auto, auto, auto, auto),
[*Binary*], [$#text(red)[000]1$], [$1011$], [$1101$],
[*Hexadecimal*], [$1$], [B], [D],
)
#solve[$(1 1011 1101)_2 = (1$BD$)_16$]
]
],
)
+ Octal numbers to hexadecimal numbers. (10 pts)
#enum(
numbering: "a.",
[
$(605.35)_8$
#notein[
1. #underline[Octal to Binary]
#table(
columns: (auto, auto, auto, auto, auto, auto, auto),
[*Octal*], [$6$], [$0$], [$5$], [$.$], [$3$], [$5$],
[*Binary*], [$110$], [$000$], [$101$], [$.$], [$011$], [$101$],
)
#note[$=11 000 0101 .011 101$]
//$=1 1000 0101.0111 01$
2. #underline[Binary to Hexadecimal]
#table(
columns: (auto, auto, auto, auto, auto, auto, auto),
[*Binary*],
[$#text(red)[000]1$],
[$1000$],
[$0101$],
[$.$],
[$0111$],
[$01#text(red)[00]$],
[*Hexadecimal*], [$1$], [$8$], [$5$], [$.$], [$7$], [$4$],
)
#solve[$(605.35)_8 = (185.74)_16$]
]
],
)
+ Hexadecimal numbers to octal numbers. (10 pts)
#enum(
numbering: "a.",
[
(C$9$A.$3$B$)_16$
#notein[
1. #underline[Hexadecimal to Binary]
#table(
columns: (auto, auto, auto, auto, auto, auto, auto),
[*Hexadecimal*], [C], [$9$], [A], [$.$], [$3$], [B],
[*Binary*], [$1100$], [$1001$], [$1010$], [$.$], [$0011$], [$1011$],
)
#note[$=1100 1001 1010 . 0011 1011$]
//$=110 010 011 010.001 110 11
2. #underline[Binary to Octal]
#table(
columns: (auto, auto, auto, auto, auto, auto, auto, auto, auto),
[*Binary*],
[$110$],
[$010$],
[$011$],
[$010$],
[$.$],
[$001$],
[$110$],
[$11#text(red)[0]$],
[*Octal*], [$6$], [$2$], [$3$], [$2$], [$.$], [$1$], [$6$], [$6$],
)
#solve[(C$9$A.$3$B$)_16 = (6232.166)_8$]
]
],
)