diff --git a/Spring-2023/CS-2233/Assignment-1/Solution.typ b/Spring-2023/CS-2233/Assignment-1/Solution.typ index 24471cb..9999216 100644 --- a/Spring-2023/CS-2233/Assignment-1/Solution.typ +++ b/Spring-2023/CS-2233/Assignment-1/Solution.typ @@ -247,9 +247,9 @@ Section 001 // | F | F | T | T | T | F | F | // | F | F | F | T | T | F | F | #solve[ - Notice that the furthest right column only has true values, thus the above - statement is a - _tautology_ and is always _True_ + Notice that both truth tables have equivalent values in their furthest right + columns. As a result of this, the proposition $¬q → (p ∧ r) ≡ (¬q → r) ∧ (q ∨ p)$ must + be _True_. ][ #table(columns: 2, stroke: none, [Truth table for *$¬q → (p ∧ r)$* #table(