From 89e8b634e8456da177ba1b167bf415ef19d9b911 Mon Sep 17 00:00:00 2001 From: Price Hiller Date: Fri, 26 Jan 2024 23:18:31 -0600 Subject: [PATCH] style: format with typstfmt --- Spring-2023/CS-2233/Assignment-1/Solution.typ | 24 +++++++++---------- 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/Spring-2023/CS-2233/Assignment-1/Solution.typ b/Spring-2023/CS-2233/Assignment-1/Solution.typ index 7ab2bdb..24471cb 100644 --- a/Spring-2023/CS-2233/Assignment-1/Solution.typ +++ b/Spring-2023/CS-2233/Assignment-1/Solution.typ @@ -49,15 +49,16 @@ Section 001 radius: 4pt, stroke: luma(50%) + .5pt, fill: luma(90%), - )[If you are interested in viewing the source code of this document, you can do so by clicking + )[If you are interested in viewing the source code of this document, you can do so + by clicking #text( blue, link( "https://gitlab.orion-technologies.io/philler/college/-/blob/Development/Spring-2023/CS-2233/Assignment-1/Solution.typ?ref_type=heads", "here", ), - ). This document was written in Typst and a bit of infinite _withering_ pain in Neovim, a Vim - derivative. Here's to hoping everything below is correct.], + ). This document was written in Typst and a bit of infinite _withering_ pain in + Neovim, a Vim derivative. Here's to hoping everything below is correct.], ) = Problems @@ -125,17 +126,17 @@ Section 001 Expressing "You understand propositional logic if you passed CS 2233" logically would be: - #m[s → q] + #m[s → p] Now slightly rewriting the statement with our logic embedded, "If you can - register for CS 3343, then you have passed CS 2233 and $(s → q)$". + register for CS 3343, then you have passed CS 2233 and $(s → p)$". - Then further refining the statement: "If you can register for CS 3343 then $p ∧ (s → q)$. + Then further refining the statement: "If you can register for CS 3343 then $p ∧ (s → p)$. - And with a final refinement: $r → p ∧ (s → q)$ + And with a final refinement: $r → p ∧ (s → p)$ Thus the final expression logically would be: - ][$r → p ∧ (s → p)$] + ][$r → (p ∧ (s → p))$] ] #problem( 3, @@ -379,8 +380,8 @@ Section 001 d. [10 points] By creating a sequence of logical equivalences and annotating each step #solve[Notice by step three, both logical sequences are equivalent.][ - #table(columns: 2, [ - *$¬q → (p ∧ r)$* + #table(columns: 2, align: left, [ + #align(center)[*$¬q → (p ∧ r)$*] #grid(columns: 2, row-gutter: .5em, column-gutter: 1em)[ 1. $¬¬q ∨ (p ∧ r)$ ][Conditional Identities][ @@ -388,8 +389,7 @@ Section 001 ][Double Negation Law][ 3. $(q ∨ p) ∧ (q ∨ r)$ ][Distributive Laws] - ], [ - #align(left)[*$(¬q → r) ∧ (q ∨ p)$*] + ], [#align(center)[*$(¬q → r) ∧ (q ∨ p)$*] #grid(columns: 2, row-gutter: .5em, column-gutter: 1em)[ 1. $(¬¬q ∨ r) ∧ (q ∨ p)$ ][Conditional Identities][