cs-2233: complete assignment 3
This commit is contained in:
parent
b292838433
commit
94d33b3d69
BIN
Spring-2023/CS-2233/Assignment-3/Assignment.pdf
Normal file
BIN
Spring-2023/CS-2233/Assignment-3/Assignment.pdf
Normal file
Binary file not shown.
161
Spring-2023/CS-2233/Assignment-3/Solution.typ
Normal file
161
Spring-2023/CS-2233/Assignment-3/Solution.typ
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
#let m(math) = align(center)[$#math$]
|
||||||
|
#let pgbreakmsg = align(center, text(blue, weight: "black", size: 1.5em)[See Next Page\ ↓])
|
||||||
|
|
||||||
|
#let solve(work, solution) = align(
|
||||||
|
center,
|
||||||
|
)[
|
||||||
|
#let solution = align(center, block(
|
||||||
|
inset: 5pt,
|
||||||
|
stroke: blue + .3pt,
|
||||||
|
fill: rgb(0, 149, 255, 15%),
|
||||||
|
radius: 4pt,
|
||||||
|
)[#align(left)[#solution]])
|
||||||
|
|
||||||
|
#if work == [] [
|
||||||
|
#solution
|
||||||
|
] else [
|
||||||
|
#block(inset: 6pt, radius: 4pt, stroke: luma(50%) + .5pt, fill: luma(90%))[
|
||||||
|
#align(left, text(font: "Liberation Sans", size: .85em, work))
|
||||||
|
#solution
|
||||||
|
]
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
#let problem-header(number, points) = [== Problem #number. #text(weight: "regular")[[#points
|
||||||
|
points]]]
|
||||||
|
|
||||||
|
#let problem(number, points, body) = [
|
||||||
|
== Problem #number. #text(weight: "regular")[[#points points]]
|
||||||
|
#body
|
||||||
|
]
|
||||||
|
|
||||||
|
#set page(margin: (x: .4in, y: .4in))
|
||||||
|
#set table(align: center)
|
||||||
|
|
||||||
|
_*Price Hiller*_
|
||||||
|
#v(-.8em)
|
||||||
|
_*zfp106*_
|
||||||
|
#v(-.8em)
|
||||||
|
Homework Assignment 3
|
||||||
|
#v(-.8em)
|
||||||
|
CS 2233
|
||||||
|
#v(-.8em)
|
||||||
|
Section 001
|
||||||
|
|
||||||
|
#align(
|
||||||
|
center,
|
||||||
|
block(
|
||||||
|
inset: 6pt,
|
||||||
|
radius: 4pt,
|
||||||
|
stroke: luma(50%) + .5pt,
|
||||||
|
fill: luma(90%),
|
||||||
|
)[If you are interested in viewing the source code of this document, you can do so
|
||||||
|
by clicking
|
||||||
|
#text(
|
||||||
|
blue,
|
||||||
|
link(
|
||||||
|
"https://git.orion-technologies.io/Price/college/src/branch/Development/Spring-2023/CS-2233/Assignment-3/Solution.typ",
|
||||||
|
"here",
|
||||||
|
),
|
||||||
|
).],
|
||||||
|
)
|
||||||
|
= Problems
|
||||||
|
|
||||||
|
#problem(
|
||||||
|
1,
|
||||||
|
10,
|
||||||
|
)[
|
||||||
|
- Complete all participation activities in zyBook sections $2.1$, $2.2$, and $2.4$-$2.6$.
|
||||||
|
#solve[][Done]
|
||||||
|
]
|
||||||
|
|
||||||
|
#problem(
|
||||||
|
2,
|
||||||
|
10,
|
||||||
|
)[
|
||||||
|
Prove that if $a$, $b$, and $c$ are odd integers, then $a + b + c$ is an odd
|
||||||
|
integer.
|
||||||
|
|
||||||
|
#solve[
|
||||||
|
An odd integer is expressed as $2k + 1$ where $k$ is some integer.
|
||||||
|
][
|
||||||
|
1. Suppose that $a$, $b$, and $c$ are odd integers. I shall prove that $a + b + c$ is an odd
|
||||||
|
integer.
|
||||||
|
2. Since $a$, $b$, and $c$ are integers, $a + b + c$ is also an integer
|
||||||
|
3. Since $a$ is odd, there is an integer $q$ such that $a = 2q + 1$
|
||||||
|
4. Since $b$ is odd, there is an integer $w$ such that $b = 2w + 1$
|
||||||
|
5. Since $c$ is odd, there is an integer $e$ such that $c = 2e + 1$
|
||||||
|
6. $a + b + c = (2q + 1) + (2w + 1) + (2e + 1) = 2(q + w + e + 1) + 1$
|
||||||
|
7. Let $m = q + w + e + 1$
|
||||||
|
8. Since $q$, $w$, $e$, and $1$ are integers, $m$ must be an integer
|
||||||
|
9. Since $a + b + c = 2m + 1$, therefore $a + b + c$ is
|
||||||
|
an odd integer
|
||||||
|
]
|
||||||
|
]
|
||||||
|
#problem(
|
||||||
|
3,
|
||||||
|
30,
|
||||||
|
)[
|
||||||
|
Recall that a rational number can be put in the form $p/q$ where $p$ and $q$ are
|
||||||
|
integers and $q ≠
|
||||||
|
0$. Prove the following for any rational number, $x$:
|
||||||
|
|
||||||
|
a.) If $x$ is rational, then $x - 5$ is rational
|
||||||
|
#solve[][
|
||||||
|
1. Let $x$ be a rational number. I will show that $x - 5$ is also a rational
|
||||||
|
number.
|
||||||
|
2. Since $x$ is rational, there exists integers $p$ and $q$ such that $x = p/q$ and $q ≠ 0$.
|
||||||
|
3. Thus $x - 5 = p/q - 5$
|
||||||
|
4. Since $5$ is an integer, $5$ is also a rational number written as $5/1$
|
||||||
|
5. Therefore $p/q - 5 = p/q - 5/1$
|
||||||
|
6. Working $p/q - 5/1$ we get $(p - 5q)/(q × 1)$ which is $(p - 5q)/q$
|
||||||
|
7. Since $x - 5$ is equal to the ratio of two integers where the deonominator $≠ 0$, then $x - 5$ is a rational number
|
||||||
|
]
|
||||||
|
b.) If $x - 5$ is rational, then $x/3$ is rational
|
||||||
|
|
||||||
|
#solve[][
|
||||||
|
1. Let $x - 5$ be rational. I will show that $x/3$ is also rational
|
||||||
|
2. $x - 5 = p/q$ for some integers $p$, $q$, where $q ≠ 0$
|
||||||
|
3. Add $5$ to both sides giving $x = p/q + 5$
|
||||||
|
4. Divide both sides by $3$ giving $x/3 = (p/q + 5)/3$
|
||||||
|
5. $(p/q + 5)/3$ is also rational
|
||||||
|
6. Therefore $x/3$ is rational
|
||||||
|
]
|
||||||
|
\
|
||||||
|
c.) If $x/3$ is rational, then $x$ is rational
|
||||||
|
#solve[][
|
||||||
|
1. Let $x/3$ be rational. I will show that $x$ is rational
|
||||||
|
2. $x/3 = p/q$ for some integers $p$ and $q$ where $q ≠ 0$
|
||||||
|
3. Multiply both sides of the equation by $q$ to get $x = 3p/q$
|
||||||
|
4. Since $p$, $q$, and $3$ are integers, $x$ is rational
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
#problem(
|
||||||
|
4,
|
||||||
|
20,
|
||||||
|
)[
|
||||||
|
Consider the following statement: For all integers $m$ and $n$, if $m - n$ is
|
||||||
|
odd, then $m$ is odd or $n$ is odd.
|
||||||
|
|
||||||
|
a.) Prove the statement using a proof by contrapositive
|
||||||
|
#solve[][
|
||||||
|
1. Let $m$ and $n$ be integers. I will show that if $m$ is even and $n$ is even
|
||||||
|
then $m - n$ is even
|
||||||
|
2. Since $m$ is even, there exists an integer $k$ such that $m = 2k$
|
||||||
|
3. Since $n$ is even, there exists an integer $j$ such that $n = 2j$
|
||||||
|
4. Thus, $m - n = 2k - 2j = 2(k - j )$
|
||||||
|
5. Since $k - j$ is an integer, $2(k - j)$ is even
|
||||||
|
6. Therefore, if $m$ is even and $n$ is even, $m - n$ is even
|
||||||
|
]
|
||||||
|
b.) Prove the statement by using a proof by contradiction
|
||||||
|
#solve[][
|
||||||
|
1. Let $m$ and $n$ be integers. Assume then that $m - n$ is odd, but both $m$ and $n$ are
|
||||||
|
even
|
||||||
|
2. If $m$ is even, then $m = 2k$ for some integer $k$
|
||||||
|
3. If $n$ is even, then $n = 2j$ for some integer $j$
|
||||||
|
4. Then $m - n = 2k - 2j = 2(k - j)$
|
||||||
|
5. But $2(k - j)$ is even, which contradicts that $m - n$ is odd
|
||||||
|
6. Thus, if $m - n$ is odd, then $m$ must be odd or $n$ must be odd
|
||||||
|
]
|
||||||
|
]
|
@ -1,4 +1,10 @@
|
|||||||
* DONE Assignment 1
|
* DONE Assignment 1 :college:cs2233:
|
||||||
DEADLINE: <2024-01-26 Fri> SCHEDULED: <2024-01-25 Thu>
|
DEADLINE: <2024-01-26 Fri> SCHEDULED: <2024-01-25 Thu>
|
||||||
|
|
||||||
Complete Zybooks section ~1~ and the first homework assignment
|
Complete Zybooks section ~1~ and the first homework assignment
|
||||||
|
|
||||||
|
* TODO Assignment 3 :college:cs2233:
|
||||||
|
DEADLINE: <2024-02-11 Sun> SCHEDULED: <2024-02-11 Sun>
|
||||||
|
|
||||||
|
Complete Zybooks section ~2~ and the third homework assignment
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user