Binary, Encodings, and Formats

Binary Representation

- Our normal number system is "decimal" or base 10
- Binary is base 2
 - Octal, base 8
 - Hexadecimal, base 16
- Can convert our number system to/from any other base
 - Can convert any base to any other base
- 1 bit is a single 0 or 1; 1 byte is 8 bits

Convert Decimal to Binary

- Divide by new base and take the remainder:
 - $56_{10} => 111000_{2}$ 56 / 2 = 28 (0/2) => 0 28 / 2 = 14 (0/2) => 00 14 / 2 = 7 (0/2) => 000 7 / 2 = 3 (1/2) => 1000 3 / 2 = 1 (1/2) => 11000 1 / 2 = 0 (1/2) => 111000

Convert Binary to Decimal

- Raise current base to power of current digit multiplied by digit value and sum result:
 - 111000₂ => 56₁₀

Physical Data Storage: Hard Disk Drive (HDD)

- A thin layer of magnetic alloy is on top of the HDD
- Write: the armature has a magnet that can produce a positive or negative charge and polarize a specific "spot" on the HDD
- Read: each "spot" on the HDD either "attracts" or "repels" the armature, which is converted to an electrical pulse

Physical Data Storage: Solid State Drive (SSD)

- Made up of transistors; has a source, gate, and drain
- Write: open the drain (send positive charge) to allow electrons to flow through, some of which get trapped in the gate; send negative charge through gate to push electrons out
- Read: 0s and 1s are determined by charge (presence of electrons) in gate

Physical Data Storage

Encoding: Text

- Binary can represent any number, but what about letters and symbols?
- Different symbols/characters are mapped to different numbers, this mapping is called an "Encoding"
- There exist many different kinds of encoding but the 2 most used are:
 - ASCII (American Standard Code for Information Interchange) Created in 1963, uses numbers 0 - 127 (a total of 7 bits) to represent all english letters, numbers 0-9, all symbols on the keyboard, many kinds of whitespace, etc.
 - Unicode Created in 1991, has encodings for 1,112,064 characters, which represents practically all written languages in use in the world using an integer code (4 bytes); it has a number of different representations called Unicode Transformation Format (UTF): UTF-8, UTF-16, UTF-32
 - Most other text encodings are based on one of these 2

Encoding: ASCII

Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	а
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	С
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	е
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	1
10	A	1010	12	[LINE FEED]	58	3A	111010	72	:	106	6A	1101010	152	j
11	B	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	С	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	@	112	70	1110000	160	p
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	Α	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	B	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	C	115	73	1110011	163	S
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	74	1110100	164	t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101	105	E	117	75	1110101	165	u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	v
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000	110	н	120	78	1111000	170	x
25	19	11001	31	[END OF MEDIUM]	73	49	1001001	111	1	121	79	1111001	171	У
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010	112	J	122	7A	1111010	172	z
27	1B	11011	33	[ESCAPE]	75	4B	1001011	113	K	123	7B	1111011	173	{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100	114	L	124	7C	1111100	174	
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	M	125	7D	1111101	175	}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110	116	N	126	7E	1111110	176	~
31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111	117	0	127	7F	1111111	177	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41	1	81	51	1010001	121	Q					
34	22	100010	42		82	52	1010010	122	R					
35	23	100011	43	#	83	53	1010011	123	S					
36	24	100100	44	\$	84	54	1010100	124	т					
37	25	100101	45	%	85	55	1010101	125	U					
38	26	100110	46	&	86	56	1010110	126	V					
39	27	100111	47	1	87	57	1010111	127	W					
40	28	101000	50	(88	58	1011000	130	X					
41	29	101001	51)	89	59	1011001	131	Y					
42	ZA	101010	52	*	90	5A	1011010	132	Z					
43	2B	101011	53	+	91	5B	1011011	133	[
44	2C	101100	54	·	92	5C	1011100	134	1					
45	2D	101101	55	-	93	5D	1011101	135	1					
46	2E	101110	56	1	94	5E	1011110	136	^					
47	2F	101111	57	/	95	5F	1011111	137	-					

Encoding: Unicode

128	ç	144	É	160	á	176	***	192	L	208	ш	224	α	240	=
129	ü	145	æ	161	í	177		193	1	209	Ŧ	225	в	241	±
130	é	146	Æ	162	ó	178		194	т	210	π	226	Г	242	≥
131	â	147	ô	163	ú	179	L	195	F	211	L	227	π	243	≤
132	ä	148	ö	164	ñ	180	+	196	-	212	F	228	Σ	244	٢
133	à	149	ò	165	Ñ	181	=	197	+	213	F	229	σ	245	1
134	å	150	û	166		182	-	198	F	214	Г	230	μ	246	÷
135	ç	151	ù	167	•	183	п	199	F	215	#	231	τ	247	*
136	ê	152	Ÿ	168	6	184	7	200	L	216	+	232	Φ	248	•
137	ë	153	Ö	169	-	185	4	201	F	217	٦	233	۲	249	
138	è	154	Ü	170	4	186	1	202	ш	218	Г	234	Ω	250	
139	ï	155	•	171	1/2	187	7	203	T	219		235	δ	251	V
140	î	156	£	172	3/4	188	1	204	F	220		236	00	252	n
141	ì	157	¥	173	i.	189	Ш	205	-	221	1	237	ф	253	2
142	Ä	158	R	174	«	190	4	206	#	222	1	238	8	254	
143	Å	159	f	175	>>	191	-	207	1	223		239	0	255	

Encoding: Images

- To encode images, bits are used to represent different colors
 - Sound files use bits to represent different frequencies (period, amplitude, shift, etc.)
- Simplest form is black and white images: 0 represent black, 1 represents white (can also be the opposite)
- Raster vs Vector

=

Encoding: Images

A grayscale representation of encoding images at various bit depths—from the top: 1 bit, 2 bits, 3 bits, 4 bits, 5 bits, and 8 bits.

Encoding: Images

a	Db	c COL	R	G	В	HUE	Н	S V	a	Db	C COL	R	G	В	HUE	н	S V
0.0	0.0	0.0	255	255	255		0	0.001.00	0.7	0.0	0.3 🖸	255	255	85		60	0.671.00
0.0	0.0	0.0	255	255	255		0	0.001.00	0.7	0.0	0.7 🔲	85	255	85		120	0.671.00
0.0	0.0	0.3 🔲	170	170	255		240	0.331.00	0.7	0.0	1.0	0	255	170		160	1.001.00
0.0	0.0	0.7 🗖	85	85	255		240	0.671.00	0.7	0.3	0.0	255	85	255		300	0.671.00
0.0	0.0	1.0	0	0	255		240	1.001.00	0.7	0.3	0.3 🗖	255	170	170		0	0.331.00
0.0	0.3	0.0 🔲	170	255	170		120	0.331.00	0.7	0.3	0.7 🔲	170	255	170		120	0.331.00
0.0	0.3	0.3 🔲	255	170	170		0	0.331.00	0.7	0.3	1.0	85	255	255		180	0.671.00
0.0	0.3	0.7 🗖	255	85	255		300	0.671.00	0.7	0.7	0.0	85	85	255		240	0.671.00
0.0	0.3	1.0	170	0	255		280	1.001.00	0.7	0.7	0.3 🗖	170	170	255		240	0.331.00
0.0	0.7	0.0	85	255	85		120	0.671.00	0.7	0.7	0.7 🗖	255	255	255		0	0.001.00
0.0	0.7	0.3 🖸	255	255	85		60	0.671.00	0.7	0.7	1.0	170	170	255		240	0.331.00
0.0	0.7	0.7 🛄	255	85	85		0	0.671.00	0.7	1.0	0.0	0	170	255		200	1.001.00
0.0	0.7	1.0	255	0	170		320	1.001.00	0.7	1.0	0.3 🗖	85	255	255		180	0.671.00
0.0	1.0	0.0	0	255	0		120	1.001.00	0.7	1.0	0.7 🛄	170	255	170		120	0.331.00
0.0	1.0	0.3 🖸	170	255	0		80	1.001.00	0.7	1.0	1.0 🛄	255	170	170		0	0.331.00
0.0	1.0	0.7	255	170	0		40	1.001.00	1.0	0.0	0.0	255	0	0		0	1.001.00
0.3	0.0	0.0	255	170	170		0	0.331.00	1.0	0.0	0.3	255	170	0		40	1.001.00
0.3	0.0	0.3	170	255	170		120	0.331.00	1.0	0.0	0.7	170	255	0		80	1.001.00
0.3	0.0	0.7	85	255	255		180	0.671.00	1.0	0.0	1.0	0	255	0		120	1.001.00
0.3	0.0	1.0	0	170	255		200	1.001.00	1.0	0.3	0.0	255	0	170		320	1.001.00
0.3	0.3	0.0	170	170	255		240	0.331.00	1.0	0.3	0.3	255	85	85		0	0.671.00
0.3	0.3	0.3	255	255	255		0	0.001.00	1.0	0.3	0.7	255	255	85		60	0.671.00
0.3	0.3	0.7	170	1/0	255		240	0.331.00	1.0	0.3	1.0	85	255	85	8	120	0.6/1.00
0.3	0.3	1.0	85	85	255		240	0.6/1.00	1.0	0.7	0.0	1/0	0	255		280	1.001.00
0.3	0.7	0.0	85	255	255		180	0.671.00	1.0	0.7	0.3	255	68	255	•	300	0.6/1.00
0.3	0./	0.3	1/0	255	1/0		120	0.331.00	1.0	0.7	0.7	255	1/0	1/0		0	0.331.00
0.0	0.7	V./	200	1/0	170		200	0.331.00	1.0	0.7	1.0	1/0	200	170	•	120	0.331.00
0.3	0.7	1.0	200	05	470		300	0.6/1.00	1.0	1.0	0.0	0E	0	200		240	1.001.00
0.0	1.0	0.0	OF	233	1/0	8	100	1.001.00	1.0	1.0	0.3	470	470	200		240	0.6/1.00
0.0	1.0	0.3	255	200	00		120	0.671.00	1.0	1.0	1.00	1/0	255	200		240	0.331.00
0.3	1.0	1 0	200	200	00		00	0.671.00	1.0	1.0	1.0 🗖	200	200	200	-	Ŷ	0.001.00
0.5	1.0	0.0	200	00	00		ő	0.671.00									
v.,	0.0	V.V 🔛	200	0.3	00		0	V.0/ 1.00									

File Formats

- How data/information is structured for storage
- A specifications document is often available (not always, e.g. proprietary formats) so the format can be decoded and used by many applications
 - Specifications can include: structure, extended encodings, tags, metadata, extensions, etc.
 - Note: file formats often have an extension to help identify them, but these are not necessary
- There are about 3000 "common" file formats, and many thousands more "uncommon": <u>https://en.wikipedia.org/wiki/List_of_file_formats</u>
- Examples:
 - Text: PDF (.pdf), Word (.doc), plain text (.txt), etc.
 - Image: JFIF (used by .jpeg), TIFF (.tif), etc.
 - Sound: WAV (.wav), MP4 (.mp4), etc.

File Formats: Text

The ASCII Character Set

The American Standard Code for Information Interchange or ASCII assigns values between 0 and 255 for upper and lower case letters, numeric digits, punctuation marks and other symbols. ASCII characters can be split into the following sections:

	0 - 31	Control codes
	32 - 127	Standard, implementation-independent characters
u.	128 - 255	Special symbols, international character sets – generally, non-standard characters.

Control Codes : ASCII Characters 0 - 31

The following table lists and describes the first 32 ASCII characters, often referred to as control codes. The columns show the decimal and hexadecimal ASCII values for each code along with their abbreviated and full names. Descriptions are given to those most in use today.

Decimal	Octal	Hexadecimal	Code	Description
000	000	00	NUL	Null
001	001	01	SOH	Start Of Heading
002	002	02	STX	Start of TeXt
003	003	03	ETX	End of TeXt
004	004	04	EOT	End Of Transmission
005	005	05	ENQ	ENQuiry
006	006	06	ACK	ACKnowledge

Table continued on following page

Plain text PDF file

PDF using a PDF reader

File Formats: Images

• For any file format (not just images), it's all about the features offered

File Formats: Images

JPEG in an image viewer

Plain text JPEG file

File Format vs Encoding

- The encoding is the specific mapping of symbols, colors, frequencies, etc., the file format is the organization and utilization of that encoding
- The encoding is ONLY the mapping of non-numerical data to numbers (and in some cases also contains a compression algorithms), it is just a representation
- File formats provide particular features, constraints, actions (e.g., GIF), etc. to the user to best utilize the underlying encoding
- Example: JFIF (JPEG File Interchange Format) is the format and JPEG is the encoding (also includes the compression algorithm)
 - Sometimes can be confusing: PNG is an encoding and often referred to as a file format as well but the technical file format for PNG is MIME