Cryptography

Why Encryption Matters

- Networks are open to everyone, so we assume that anyone may acquire messages sent across networks
- You don't want your messages read, but there is little that can be done if some REALLY wants to read them (especially if it's on a network)
- What can we do to stop them from reading messages, even if we assume they can acquire the message?
 - Encrypt the message so that it still can't be read (at least, not without decrypting it first)

Needs for Cryptography

- Top secret or protected communication
 - Government/Company secrets
 - War strategies and information
 - Email
 - Bank transactions
 - \circ etc.
- Cryptography is nothing new, the oldest known use is around 1900 B.C.E in Egypt
- What does it mean for something to be secure?
 - Claude Shannon; Shannon Cipher: An attacker can do no better than random guessing

Ciphers/Cyphers

- Symmetric cryptography (private-key)
 - Uses the same key to encrypt and decrypt
 - Substitution
 - Hello World => noppq vqjpe
 - Transposition
 - Hello World => elwodhrllo
 - Polyalphabetic Substitution
 - Hello World => tjyad itear (adding "lemon" to letters)
 - Hello World => sixzb hsdzq (Vigenère Cipher using "lemon")
- Public-key (Asymmetric cryptography)
 - Uses different keys to encrypt and decrypt

In-Class Activity: Cryptogram

Neil Gaiman

JMQZAN ZXXB ZUJ MHEX MHFFXZXB JU WX

JTOX. JHSXN HZB BTXHKN HTX JMX

NMHBUR-JTOJMN JMHJ RQSS XZBOTX RMXZ

KXTX LHIJN HTX BONJ HZB HNMXN, HZB

LUTAUJ.

In-Class Activity: Cryptogram

Neil Gaiman

JMQZAN	ZXXB	ZUJ	MHEX	MHF	FXZ	ХВ	JU	WX
JTOX.	JHSXN	HZB	втхні	KN H	ТХ	JWX		
NMHBUR	-JIOJN	AN JN	IHJ RO	ass a	XZB	ОТХ	RM	XZ
KXTX L	HIJN	НТХ	BONJ	HZB	HNN	IXN,	HZ	ZB

LUTAUJ.

Character Frequency: X - 18 J - 13, H - 13 M - 9, N - 9, Z - 9, B - 9 T - 8 U - 5 O - 4 S - 3, R - 3 Q - 2, A - 2, F - 2 E - 1, W - 1, I - 1

- 'E' is the most common letter in the English language
- Frequency depends on the type of analysis ('A' or 'T' is often the next most common letters)

Symmetric Encryption

Plain Text

Cipher Text

Plain Text

Asymmetric Encryption

RSA Encryption (Asymmetric Encryption)

- RSA (Rivest–Shamir–Adleman) Encryption
- Mathematics of Algorithm:
 - Select 2 prime numbers p and q (p = 53, q = 59)
 - Public Key, (n,e):
 - n = p*q (n = 3127)
 - e is a small exponent that must NOT be a factor of n (so must not be p or q) and must be 1 < e < (p-1)(q-1) (1 < e < 3016; e = 3)
 - Private Key, (d,e):
 - d = (k * (p-1)(q-1) + 1) / e, for some integer k (k = 2; d = 2011)
 - To Encrypt: m^{*}e mod n (where m is the message)
 - To Decrypt: c^d mod n (where c is the cipher)
 - Try for "HI" = 89

RSA Encryption (Asymmetric Encryption)

- Relies on the fact that it is difficult to factor large numbers (i.e., find the prime factorization)
- Relies on the size of the public/private keys
 - We need two BIG prime numbers (typically 1024 bits today (i.e., about 1.8 x 10³⁰⁸ in decimal) but there is a growing move to 2048 bits)