
How Computers Work: Hardware

Turing Machine

https://www.youtube.com/watch?v=E3keLeMwfHY

https://isaaccomputerscience.org/concepts/dsa_toc_turing_m achines?examBoard=all&stage=all

An infinitely long tape

- Split into cells
- Modern Computers: RAM
 - Capacitors and Transistors

Head

- Reads/Writes to the tape
- Modern Computers: Central Processing Unit (CPU)

Register

- Stores state of program
- Modern Computers: also CPU

Set of Instructions

- To be executed by the Head
- Modern Computers: program/software
 - Logic gates at the CPU-level

Why 0s and 1s?

- 0s and 1s don't actually exist (it's all a LIE!!!), they simply represent electric charge
- We use electrical pulses/current to perform calculations
- Transistors are used to carry the pulses/current through the CPU and perform calculations
- Transistor can be in 2 states (low voltage and high voltage)
 - There are technically more states (no voltage, medium voltage, etc.), but it's faster and more accurate to not use it
- Fun Fact: transistors are made of silicon because it carries electrical current REALLY well and it's a cheap material to produce
 - Look up how solar panels work for some more interesting facts/knowledge

Inside a Modern Computer: Power Supply Unit

- Power Cord
 - Power input
- Heat Sink
- Fan
- Transistor (normal-sized)

Inside a Modern Computer: Motherboard

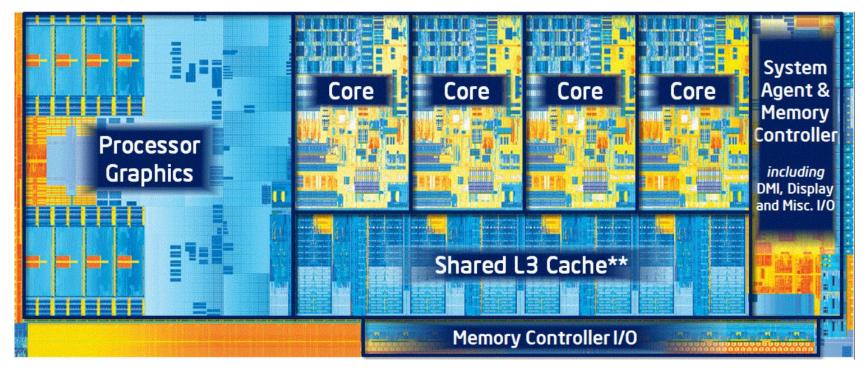
- Power
 - Main Power
 - Capacitors and Inductors
- Central Processing Unit (CPU)
- Chipset; Platform Controller Hub (PCH)
 - Communication between CPU and other (mostly storage) devices
 - System Clock
- Random Access Memory (RAM)
- Data Bus

Inside a Modern Computer: Motherboard

- Serial Advanced Technology Attachment (SATA)
- Super I/O
- Peripheral Component Interconnect (PCI)
 - Graphics Card

Inside a Modern Computer: Memory

Integrated in CPU



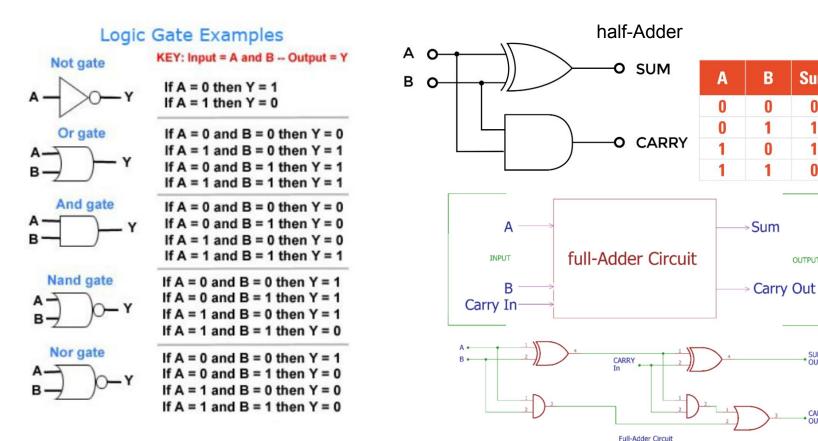
- Speed of moving memory
 - About 90% the speed of light
 - About 6cm-7cm per clock cycle
- To speed up, get closer to the CPU

Inside a Modern Computer: CPU

Inside a Modern Computer: How a CPU Calculates

Sum

OUTPUT


CARRY

Carry

0 0

0

1

Inside a Modern Computer: The Clock

$$f = 0.5 \text{ Hz}$$

T = 2.0 s

- The clock ensures calculations are synced
 - Different thicknesses and lengths of transistor may move electric current/pulse quicker or slower
- Measured in hertz (1 event/pulse/cycle per second)
 - Uses a quartz-based crystal to produce a cycle/pulse
 - Common for computers to have 3.5-4.0
 Gigahertz (a billion hertz per second)
 - 3.5-4.0 needed for intensive tasks such as video, sound, etc.; only need about 2.0-2.5 for normal tasks