
Topics: B-Trees



Topics

• Multiway Tree (M-way tree)

• Multiway Search Tree

• B-Tree (Height-balanced m-way tree/Balanced Tree)

• Application of B-tree

• B-Tree Properties

• B-Tree Order

• Creating a B-Tree

• B-Tree Operations

• Advantages and Disadvantages of B-tree

• RB Tree (Red Black Tree)

• RB Tree Properties

• Creating RB Tree

• RB Tree Operations

• RB Tree Rotations



B-Tree (Deletion)

The following are three prominent cases of the deletion operation in a B Tree:

Case 1: The Deletion/Removal of the key lies in the Leaf node - This case is further divided into two different cases:

1. The deletion/removal of the key does not violate the property of the minimum number of keys a node should hold.
• Let us visualize this case using an example where we will delete key 32 from the following B Tree.



B-Tree (Deletion)

The following are three prominent cases of the deletion operation in a B Tree:

Case 1: The Deletion/Removal of the key lies in the Leaf node - This case is further divided into two different cases:

2. The deletion/removal of the key violates the property of the minimum number of keys a node should hold. In this case, we must borrow a 
key from its proximate sibling node in the order of Left to Right.
• Firstly, we will visit the proximate Left sibling. If the Left sibling node has more than a minimum number of keys, it will borrow a key from 

this node.
• Else, we will check to borrow from the proximate Right sibling node.
• Let us now visualize this case with the help of an example where we will delete 31 from the above B Tree. We will borrow a key from the 

left sibling node in this case.



B-Tree (Deletion)

Case 1.2:



B-Tree (Deletion)

Case 1.2:

• If both the proximate sibling nodes already consist of a minimum number of keys, then we will merge the node with either
the left sibling node or the right one.

• This process of merging is done through the parent node.



B-Tree (Deletion)

Case 1.2:



B-Tree (Deletion)
• Case 2: The Deleting/Removal of the key lies in the non-Leaf node - This case is further divided into different

cases:

1. The non-Leaf/Internal node, which is removed, is replaced by an in-order predecessor if the Left child node has
more than the minimum number of keys.

In-order
1. Left Subtree, 
2. Root, 
3. Right Subtree



B-Tree (Deletion)
• Case 2: The Deleting/Removal of the key lies in the non-Leaf node - This case is further divided into different cases:

2. The non-Leaf/Internal node, which is removed, is replaced by an in-order successor if the Right child node has more than the
minimum number of keys.

3. If either child has a minimum number of keys, then we will merge the Left and the Right child nodes.

In-order
1. Left Subtree, 
2. Root, 
3. Right Subtree



B-Tree (Deletion)
• Case 3: In the following case, the tree's height shrinks.

• If the target key lies in an Internal node, and the removal of the key leads to fewer keys in the node (which is less than the
minimum necessitated), then look for the in-order predecessor and the in-order successor.

• If both the children have a minimum number of keys, then borrowing can't occur.

• This leads to Case 2(3), i.e., merging the child nodes.

• We will again look for the sibling to borrow a key.

• However, if the sibling also consists of a minimum number of keys, then we will merge the node with the sibling along with the
parent node and arrange the child nodes as per the requirements (ascending order).



Search Operation in B-Tree

• Step 1 - Read the search element from the user.

• Step 2 - Compare the search element with first key value of root node in the tree.

• Step 3 - If both are matched, then display "Given node is found!!!" and terminate the function

• Step 4 - If both are not matched, then check whether search element is smaller or larger than that key value.

• Step 5 - If search element is smaller, then continue the search process in left subtree.

• Step 6 - If search element is larger, then compare the search element with next key value in the same node and
repeat steps 3, 4, 5 and 6 until we find the exact match or until the search element is compared with last key value
in the leaf node.

• Step 7 - If the last key value in the leaf node is also not matched then display "Element is not found" and
terminate the function.



Search Operation in B-Tree

Note: This Code is not part of quiz/exam



Advantages and Disadvantages of B-Trees

• Advantages of B-Trees:

• B-Trees have a guaranteed time complexity of O(log n) for basic operations like insertion, deletion, and
searching, which makes them suitable for large data sets and real-time applications.

• B-Trees are self-balancing.

• High-concurrency and high-throughput.

• Efficient storage utilization.

• Disadvantages of B-Trees:

• B-Trees are based on disk-based data structures and can have a high disk usage.

• Not the best for all cases.

• Slow in comparison to other data structures.



Red - Black (RB) Tree 

Topics:

RB Tree (Red Black Tree)

RB Tree Properties

RB Tree Applications

RB Tree Rotations

Creating RB Tree

RB Tree Operations (Case 1 & 2 only for deletion)



Red - Black (RB) Tree 

• Red - Black Tree is another variant of Binary Search Tree in which every node is colored either RED or BLACK.

• We can define a Red Black Tree as “Red Black Tree is a Binary Search Tree in which every node is colored either
RED or BLACK.”

• Compared to other self-balancing binary search trees, the nodes in a red-black tree hold an extra bit called "color"
representing "red" and "black" which is used when re-organising the tree to ensure that it is always approximately
balanced.



Red - Black (RB) Tree Propoerties

• In Red Black Tree, the color of a node is decided based on the properties of Red-Black Tree. Every Red Black Tree
has the following properties.

1. Property #1: Red - Black Tree must be a Binary Search Tree.

2. Property #2: The ROOT node must be colored BLACK.

3. Property #3: The children of Red colored node must be colored BLACK. (There should not be two consecutive RED
nodes).

4. Property #4: In all the paths of the tree, there should be same number of BLACK colored nodes.

5. Property #5: Every new node must be inserted with RED color.

6. Property #6: Every leaf (i.e. NULL node) must be colored BLACK.



Red - Black (RB) Tree Applications 

• Red-Black trees can be used to efficiently index data in databases, allowing for fast search and retrieval of data.

• Red-Black trees can be used to efficiently implement graph algorithms such as Dijkstra's shortest path algorithm

• Red Black Trees provide faster insertion and removal operations than AVL trees as fewer rotations are done due to
relatively relaxed balancing. AVL trees provide complex insertion and removal operations as more rotations are
done due to relatively strict balancing.

• The RB tree is use in Linux Kernel scheduling

• To keep track of virtual memory segments for a process. The start address of the range serves as the key.

• RB-trees are particularly valuable in functional programming*

*Functional programming is a paradigm of building computer programs using expressions and functions without mutating state and data.



Rotation Red-Black (RB) Tree

• A rotation is a special operation designed for self-balancing Binary Search Trees which can be performed in O(1) time. An
interesting property on rotations is that it preserves the in-order traversing of the keys (ordering of the keys).

• The decision to perform a rotation or a color change is based on the aunt of the considered node (the current node). If the
node has a Black Aunt, we do a rotation. If the node has a Red Aunt, we do a color flip. After performing a rotation, we
should color fix the tree. After performing those operations, the tree should be ended like below.

Source

https://medium.com/swlh/red-black-tree-rotations-and-color-flips-10e87f72b142


Rotation Red-Black (RB) Tree

1. If the current node is the left child of its grandparent’s left child, we right rotate the grandparent around the
parent.

2. If the current node is the right child of its grandparent’s right child, we left rotate the grandparent around the
parent.

3. If the current node is the right child of its grandparent’s left child, we perform a left-right rotation where we
rotate the grandparent and the child around the parent.

4. If the current node is the left child of its grandparent’s right child, we perform a right-left rotation where we
rotate the grandparent and the child around the parent.





After Left Rotation

& Recolor



Insertion into RED BLACK (RB) Tree

• In a Red-Black Tree, every new node must be inserted with the color RED. The insertion operation in Red Black
Tree is similar to insertion operation in Binary Search Tree. But it is inserted with a color property. After every
insertion operation, we need to check all the properties of Red-Black Tree. If all the properties are satisfied
then we go to next operation otherwise we perform the following operation to make it Red Black Tree.

1. Recolor

2. Rotation

3. Rotation followed by Recolor

• The insertion operation in Red Black tree is performed using the following steps...
1. Step 1 - Check whether tree is Empty.

2. Step 2 - If tree is Empty then insert the new Node as Root node with color Black and exit from the operation.

3. Step 3 - If tree is not Empty then insert the new Node as leaf node with color Red.

4. Step 4 - If the parent of new Node is Black then exit from the operation.

5. Step 5 - If the parent of new Node is Red then check the color of parent node's sibling of new Node.

6. Step 6 - If it is colored Black or NULL then make suitable Rotation and Recolor it.

7. Step 7 - If it is colored Red then perform Recolor. Repeat the same until tree becomes Red Black Tree.



Insertion in Red-Black (RB) tree
• Now let’s construct a simple RB-Tree by inserting below set of keys. Note that for simplicity, leaf nodes (NULL’s) are ignored

in below diagrams. Elements: 5, 8, 1, 10, 9, 15, 20

Continue on next slide

We should insert each key as a red node. 

Therefore we insert 5 as a red node and immediately color it back to black as it’s the root node. 

Then we insert 8 as node 5’s right child. 
We follow the basic BST property when inserting keys. 
Inserting 1 is the same as inserting 8.

Insert 10, but now both 8 and 10 are red so fix color of node 8.

Root node cannot be RED, so color fix at node 5

Add 9 as per BST property, but that makes the tree imbalanced. 
Left rotation on node 8 and then color fix at node 9



Insertion in RB tree

• Insert node 15
• But both nodes 10 & 15 are red
• Color flip

Elements: 5, 8, 1, 10, 9, 15, 20



Insertion in RB tree

• Insert node 20
• Left rotate at node 10 (right child of its grandparent’s right child, we left rotate the grandparent around the parent)
• Nodes 9, 15 & 20 are red
• Color fix at node 15

Elements: 5, 8, 1, 10, 9, 15, 20



Deletion Operation in Red Black (RB) Tree

• The deletion operation in Red-Black Tree is similar to deletion operation in BST.

• But after every deletion operation, we need to check with the Red-Black Tree properties.

• If any of the properties are violated then make suitable operations like Recolor, Rotation and Rotation followed
by Recolor to make it Red-Black Tree.

Steps for Deletion 
1. If the node to be deleted has no children, simply remove it and update the parent node.
2. If the node to be deleted has only one child, replace the node with its child.
3. If the node to be deleted has two children, then replace the node with its in-order successor, which is the leftmost node in

the right subtree. Then delete the in-order successor node as if it has at most one child.
4. After the node is deleted, the red-black properties might be violated. To restore these properties, some color changes and

rotations are performed on the nodes in the tree. The changes are similar to those performed during insertion, but with
different conditions.

5. The deletion operation in a red-black tree takes O(log n) time on average, making it a good choice for searching and
deleting elements in large data sets.



Deletion in RB tree 
(Total cases – 3)

• Case 1: Perform standard BST delete. When we perform standard delete operation in BST, we always end up 
deleting a node which is an either leaf or has only one child

• Case 2: If either u or v is red, we mark the replaced child as black (No change in black height). 

• Note that both u and v cannot be red as v is parent of u and two consecutive reds are not allowed in red-
black tree.

• Case 3: If Both u and v are Black.

• (3.1)
1. Color u as double black.

2. Now our task reduces to convert this double black to single black. 

3. Note that If v is leaf, then u is NULL and color of NULL is considered black. 

4. So the deletion of a black leaf also causes a double black.



Deletion in RB tree

• (3.2a) Do following while the current node u is double black, and it is not the root. Let sibling of node be s.

• If sibling s is black and at least one of sibling’s children is red, perform rotation(s).

• Let the red child of s be r.

• This case can be divided in four subcases depending upon positions of s and r.

i. Left Left Case (s is left child of its parent and r is left child of s or both children of s are red). This is mirror of
right right case shown in below diagram.

ii. Left Right Case (s is left child of its parent and r is right child). This is mirror of right left case shown in below
diagram.

iii. Right Right Case (s is right child of its parent and r is right child of s or both children of s are red)

iv. Right Left Case (s is right child of its parent and r is left child of s)



Deletion in RB tree

• (3.2b): If sibling is black and its both children are black, perform recoloring, and recur for the parent if parent is 
black. 

• (3.2c): If sibling is red, perform a rotation to move old sibling up, recolor the old sibling and parent. The new 
sibling is always black (See the below diagram). This mainly converts the tree to black sibling case (by rotation) 
and leads to case (a) or (b). 

• This case can be divided in two subcases. 
i. Left Case (s is left child of its parent). This is mirror of right right case shown in below diagram. We right rotate the 

parent p. 

ii. Right Case (s is right child of its parent). We left rotate the parent p.

• (3.3) If u is root, make it single black and return (Black height of complete tree reduces by 1).



Deletion in RB tree

• Case 1: Perform standard BST delete. When we perform standard delete operation in BST, we always end up deleting a node 
which is an either leaf or has only one child

• Case 2: If either u (10) or v (20) is red, we mark the replaced child as black (No change in black height). 
• Note that both u and v cannot be red as v is parent of u and two consecutive reds are not allowed in red-black tree.

Source

https://www.geeksforgeeks.org/deletion-in-red-black-tree/


Deletion in RB tree
• Case 3: If Both u and v are Black.
• (3.1)
1. Color u as double black.
2. Now our task reduces to convert this double black to single black. 
3. Note that If v is leaf, then u is NULL and color of NULL is considered black. 
4. So the deletion of a black leaf also causes a double black.

Source

Later we will see about Null Nodes 
and their purpose

https://www.geeksforgeeks.org/deletion-in-red-black-tree/


Deletion in RB tree

Source

(3.2) Do following while the current node u is double black, and it is not the root. Let sibling of node be s.
(a): If sibling s is black and at least one of sibling’s children is red, perform rotation(s).
Let the red child of s be r.
This case can be divided in four subcases depending upon positions of s and r.

• Case 3: If Both u and v are Black.
• (3.1)
1. Color u as double black.
2. Now our task reduces to convert this double black to single black. 
3. Note that If v is leaf, then u is NULL and color of NULL is considered black. 
4. So the deletion of a black leaf also causes a double black.

https://www.geeksforgeeks.org/deletion-in-red-black-tree/


Deletion in RB tree

Source

Do following while the current node u is double black, and it is not the root. Let sibling of node be s.
(3.2a): If sibling s is black and at least one of sibling’s children is red, perform rotation(s). Let the red child of s be r. This case can
be divided in four subcases depending upon positions of s and r.

(i) Left Left Case (s is left child of its parent and r is left child of s or both children of s are red). This is mirror of right right case
shown in below diagram.

(ii) Left Right Case (s is left child of its parent and r is right child). This is mirror of right left case shown in below diagram.

(iii) Right Right Case (s is right child of its parent and r is right child of s or both children of s are red)

https://www.geeksforgeeks.org/deletion-in-red-black-tree/


Deletion in RB tree

Source

(iii) Right Right Case (s is right child of its parent and r is right child of s or both children of s are red)

https://www.geeksforgeeks.org/deletion-in-red-black-tree/


Deletion in RB tree

Source

(iv) Right Left Case (s is right child of its parent and r is left child of s)

https://www.geeksforgeeks.org/deletion-in-red-black-tree/


Deletion in RB tree
(3.2b): If sibling is black and its both children are black, perform recoloring, and recur for the parent if parent is black. 



Deletion in RB tree
• In this case, if parent was red, then we didn’t need to recur for parent, we can simply make it black (red + double black = single 

black)

• (3.2c): If sibling is red, perform a rotation to move old sibling up, recolor the old sibling and parent. The new sibling is always 
black (See the below diagram). This mainly converts the tree to black sibling case (by rotation) and leads to case (a) or (b). 

• This case can be divided in two subcases. 

(i) Left Case (s is left child of its parent). This is mirror of right right case shown in below diagram. We right rotate the parent p. 

(ii) Right Case (s is right child of its parent). We left rotate the parent p.



Deletion in RB tree

(3.3) If u is root, make it single black and return (Black height of complete tree reduces by 1).

35

25

20



Deletion in RB tree

A basic red-black tree
• Basic red-black tree with the sentinel nodes added.
• Implementations of the red-black tree algorithms will usually include the

sentinel nodes as a convenient means of flagging that you have reached
a leaf node.



Searching RB tree

Search Key = 11
Works as BST


