
Lecture 13

Topics: Hash Tables

Information About Final Exam And Remaining Points

• Final exam is remote

• Final Exam is from Lesson – 7 (Intro. To trees) to Lesson 13 (Hash Tables)

• Class Participation 5-points (will be updated once the course evaluation list is available)

• 3 Points Class participation

• 2 points course evaluation

• Extra Credit points

Section Review Vote Extra Credit Review No Vote Total Votes

0C3 13 17 2 - but selected topic to present 32

0D4 12 13 6 - but selected topic to present 31

0E1 5 16 3- but selected topic to present 24

Topics (Presentation – 5 minutes Max) – Extra Credit

1. B- Tree (Explain Order and Creation - order 3 or 5)

2. B- Tree (Insertion and deletion operation - order 3 or 5)

3. Segment tree (Array to Tree and tree to array)

4. Dijkstra’s Shortest Path Algorithm (use a graph to show how the algorithm works)

5. Hashing (Avoid Collisions)

6. Warshall's Algorithm (use a graph to show how the algorithm’s working)

7. BFS traversal

8. DFS Traversal

9. MST (use a graph to show how the algorithm works)

10. Kruskal Algorithm (use a graph to show how the algorithm works)

11. RB- Tree (Explain Tree and Creation)

12. RB- Tree (Insertion and deletion operation)

13. Building Huffman Tree using Heap

14. AVL Tree (Insertion - use a tree to show how the it works)

OC3

Topic # # of Students

1 2

3 2

4 5

5 4

6 2

7 3

8 1

10 4

11 2

13 4

14 3

OD4

Topic # # of Students

1 1

2 1

3 4

4 2

5 2

6 2

7 3

8 2

9 3

10 2

11 1

12 1

13 3

14 4

OE1

Topic # # of Students

1 1

2 2

3 2

4 1

6 1

7 2

8 2

11 1

12 1

13 4

14 7

Presentation:
Presentations will be during 14th Week
• 30th April – Tuesday – During Lecture Timings
• 2nd May – Thursday – During Lecture Timings

In person using Power point or white board
Material from the lecture slides is not allowed
Each topic must include :
• Defining the topic (2 points)
• 1 - Example for the topic (1.5 points)
• 1 - Practical or real world example of the topic

(1.5 points)

• Max 8 minutes to present the topic
• Presentation sequence is as per the selected

topic

Open Chaining (Avoiding Collusion)

SourceNote: This code will not be part of quiz or exam. It is only for implementation and understanding

https://www.log2base2.com/algorithms/searching/open-hashing.html

Open Chaining (Avoiding Collusion)

SourceNote: This code will not be part of quiz or exam. It is only for implementation and understanding

https://www.log2base2.com/algorithms/searching/open-hashing.html

Open Addressing (Avoiding Collusion)

Note: This code will not be part of quiz or exam. It is only for implementation and understanding Source

https://www.geeksforgeeks.org/program-to-implement-hash-table-using-open-addressing/

Searching for a Key

• The data that's attached to a key can be found
fairly quickly.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Searching for a Key

• Calculate the hash value.

• Check that location of the array for the key.

• If location 2 has a different key than the one you are
looking for, then move forward...

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Not me.

Searching for a Key

• When the item is found, the information can
be copied to the necessary location.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Yes!

Hash Table
Searching For A Key Or Lookup Issue

• Hash tables store data in pseudo-random locations, so accessing the data in a sorted manner is
a very time consuming operation.

• Other data structures such as self-balancing binary search trees generally operate more slowly
(since their lookup time is O(log n)) and are rather more complex to implement than hash
tables but maintain a sorted data structure at all times

• Although hash table lookups use constant time on average, the time spent can be significant.

• Evaluating a good hash function can be a slow operation.

Deleting a Record

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902

Number 155778322

. . .
Number 580625685 Number 701466868

• Records may also be deleted from a hash table.

• But the location must not be left as an ordinary "empty spot" since that could interfere with
searches.

• The location must be marked in some special way so that a search can tell that the spot used
to have something in it.

Please

delete me.

When we delete a key from slot 4 , we cannot simply mark that slot as empty
by storing {0 or -1} in it. Doing so might make it impossible to retrieve any key
(k) during whose insertion we had probed slot 4 and found it occupied.

Hashing Concerns

• Hash tables in general exhibit poor locality of reference i.e. the data to be accessed is
distributed seemingly at random in memory. Because hash tables cause access patterns that
jump around, this can trigger microprocessor cache misses that cause long delays.

• Hash tables are more difficult and error-prone to write and use. Hash tables require the design
of an effective hash function for each key type, which in many situations is more difficult and
time-consuming to design and debug

• In some applications, a black hat with knowledge of the hash function may be able to supply
information to a hash which creates worst-case behavior by causing excessive collisions,
resulting in very poor performance (i.e., a denial of service attack).

Brent’s Method

• This method is a heuristic*. This attempts to minimize the average time for a successful
search in a hash table.

• This method was originally applying on double hashing technique, but this can be used on
any open addressing techniques like linear and quadratic probing.

Brent hashing was originally developed to
make the double-hashing process more
efficient, but it can be successfully
applied to any closed hashing process.

* Heuristic is a problem-solving strategy or method that is not guaranteed to find the
optimal solution, but is designed to find a satisfactory solution in a reasonable
amount of time.

Hashing: Collision Resolution: Brent's Method
• Record Keys: 27, 18, 29, 28, 39

• Table Size = Table

• Hash Function = hash(key) = key mod Table

• Incrementing Function :

• i(key) = Quotient (Key / Table) mod Table (computed on incoming key)

• ‘I’ is the function you defined for the increment

SourceContinue next slide ->

http://www.minkhollow.ca/Courses/461/Notes/Hashing/HashBrentex1.html

Hashing: Collision Resolution: Brent's Method
• Record Keys: 27, 18, 29, 28, 39

• Table Size = Table

• Hash Function = hash(key) = key mod Table

• Incrementing Function :
• i(key) = Quotient (Key / Table) mod Table (computed on incoming key)

• ‘I’ is the function you defined for the increment

Source

loc Key Detail

0

1

2

3

4

5 27 27 mod 11 = 5

6

7 18 18 mod 11 = 7 ; 29 mod 11 = 7
i(29) = 2 so try 9

8

9

10

1. After inserting 27 and 18, we have a collision on the insertion of 29.
I. Should we move 18 to reduce the total # of probes?
II. 18 has 1; 29 has 2;

a) i(key) = i(18) = 18 has 1 (18 / 11 = > 1.63 % 11);
b) i(key) = i(29) = 29 has 2 (29/ 11 => 2.63 % 11);

Continue next slide ->

http://www.minkhollow.ca/Courses/461/Notes/Hashing/HashBrentex1.html

Hashing: Collision Resolution: Brent's Method
• Record Keys: 27, 18, 29, 28, 39

• Table Size = Table

• Hash Function = hash(key) = key mod Table

• Incrementing Function :
• i(key) = Quotient (Key / Table) mod Table (computed on incoming key)

• ‘I’ is the function you defined for the increment

Source

loc Key Detail

0

1

2

3

4

5 27 27 mod 11 = 5

6

7 18 18 mod 11 = 7 ; 29 mod 11 = 7
i(29) = 2 so try 9

8

9

10

1. After inserting 27 and 18, we have a collision on the insertion of 29.
I. Should we move 18 to reduce the total # of probes?
II. 18 has 1; 29 has 2;
III. Is there any combination of i + j < 2? No, so don't move anything.
IV. Only if s (# of probes required to retrieve the item, if nothing is moved)

is 3 or more do we try to move.
2. i(key) = i(29) = 29 has 2;
3. Move 29 to loc9 (i.e. 7+2 = 9); 7 is the original index, 2 is the quotient

Continue next slide ->

http://www.minkhollow.ca/Courses/461/Notes/Hashing/HashBrentex1.html

Hashing: Collision Resolution: Brent's Method
• Record Keys: 27, 18, 29, 28, 39

• Table Size = Table;

• Hash Function = hash(key) = key mod Table

• Incrementing Function :

• i(key) = Quotient (Key / Table) mod Table (computed on incoming key)

• ‘I’ is the function you defined for the increment

Source

loc Key

0

1

2

3

4

5 27

6 28 28 mod 11 = 6; 39 mod 11 = 6;
collision

7 18

8

9 29

10

1. After inserting 27 and 18, we have a collision on the insertion of 29.
I. i(key) = i(29) = 29 has 2;
II. Move 29 to loc9 (i.e. 7+2 = 9)

2. Insert 28 at loc6
3. Insert 39 at loc6 (collision)

I. s value of 39 is 3 (i(39) = 3; try loc9; then loc1 so we need 3 probes to
find 39) - try to reduce this; start with i = 1 and j = 1 ; try moving what is
at the home address one offset along its chain i.e. move 28 to (i(28) = 2;
so offset is 2) loc8.

II. This works, so move 28 to loc8 and put 39 in loc6 Continue next slide ->

http://www.minkhollow.ca/Courses/461/Notes/Hashing/HashBrentex1.html

Hashing: Collision Resolution: Brent's Method
• Record Keys: 27, 18, 29, 28, 39

• Table Size = Table;

• Hash Function = hash(key) = key mod Table

• Incrementing Function :

• i(key) = Quotient (Key / Table) mod Table (computed on incoming key)

• ‘I’ is the function you defined for the increment

Source

loc Key

0

1

2

3

4

5 27

6 39

7 18

8 28

9 29

10

1. After inserting 27 and 18, we have a collision on the insertion of 29.
I. i(key) = i(29) = 29 has 2;
II. Move 29 to 9 (i.e. 7+2 = 9)

2. Insert 28 at 6
3. Insert 39 at 6 (collision) (As i(39) = 3 which is higher then i(28) = 2, meaning

keeping 39 at loc6 will result is less proving as compared to value 28)
I. Move 28 to loc8 and put 39 in loc6

http://www.minkhollow.ca/Courses/461/Notes/Hashing/HashBrentex1.html

Brent’s Method (Do it your self)

• What will be the final locations of the following elements if Brent's Method is use to avoid
collision:
• Record Keys: 20, 10, 30, 40, 31, 50

• Table Size = 10;

• Hash Function = key divide Table = Key/Table Size

• Incrementing Function in case of collision = i+(key current loc); were i = 1.

loc Key

0

1

2

3

4

5

6

7

8

9

1. After inserting 20
I. 20/10 = 2; insert 20 at loc2
..
..

2. Case of collision = 31/10 = 3; loc3 contain 30; collision
I. i+(key current loc) = 1+3 = 4; assign loc4 to 31

3. Case of collision as 40 is at loc4
I. i+(key current loc) = 1+4 = 5; assign loc5 to 31

Indexing => loc1 = 10; loc2 = 20; loc3=30; loc4=40; loc5=31; loc6=50

Quiz and Final Exam

• Quiz – 2 - 30th April – 6:00 AM till End of day (11: 58 PM)

• Final Exam - 7th May, 8:00 AM - 3:00 PM

• Presentations (extra credit) will be during 14th Week

• 30th April – Tuesday – During Lecture Timings

• 2nd May – Thursday – During Lecture Timings

We completed the course without any disaster

Or

did we !

