
Third Lecture (Part 1)

Topics: Creating Libraries, Stacks

CS 2124: DATA STRUCTURES
Spring 2024

Topics

• Assignment 1 (review)

• Tutoring for the Spring 2024 (announcement)

• Libraries

• Library Vs Header Files

• Static vs Dynamic

• Standard library

• Library implementation

• Library implementation & optimization

• Library review

Tutoring for the Spring 2024

• Our Location

• Tomás Rivera Center for Academic Excellence
MS 2.02.18 (Sombrilla Plaza, behind the Rowdy statue)
UTSA Main Campus
(210) 458-6783

• Hours of Operation: Monday-Thursday: 8 a.m. - 6 p.m.
Friday: 8 a.m. - 5 p.m.

Libraries

• Libraries in programming languages are collections of prewritten code (i.e. files,
programs, routines, scripts, or functions) that users can use to optimize tasks.

• This collection of reusable code is usually targeted for specific common problems i.e.
A header file contains the declaration of functions like iostream, printf, scanf,
pow, etc. A library contains its definition

Library Vs Header Files

• Header Files

• The files that tell the compiler how to call some functionality (without knowing
how the functionality actually works) are called header files.

• They contain the function prototypes. They also contain Data types and constants
used with the libraries.

• We use #include to use these header files in programs. These files end with .h
extension.

• Library

• Library is the place where the actual functionality is implemented i.e. they
contain function body. Libraries have mainly two categories (details next slide):

1. Static

2. Shared or Dynamic

Image Source

https://dotnettutorials.net/lesson/library-and-ide-in-c/

Library Vs Header Files
(Static vs Dynamic)

• Static: Static libraries contains object code linked with an end user application and
then they become the part of the executable. These libraries are specifically used at
compile time which means the library should be present in correct location when
user wants to compile the program.

• Shared or Dynamic: These libraries are only required at run-time i.e. these
libraries are linked with the program at compile time to resolve undefined references
and then they are distributed to the application so that the application can load it at
run time.

• For example, when we open our game folders we can find many .dll(dynamic link
libraries) files. As these libraries can be shared by multiple programs, they are also
called as shared libraries.

What Are DLLs (dynamic link libraries)?

• Contain shared code which multiple program use

• Several program can use the same DLL file at the same time i.e. once it is loaded in
memory
• Example: windows pop-up dialog box, device drivers

• They are loaded once the program asks for them

• DLL provides modularity

• DLL HELL !!

• If DLL is modified, there is no guarantee that the existing program can use the same
version of the file

• Microsoft has been pushing to standardize it but it is still an ongoing process.

Library Vs Header Files
(Static vs Dynamic)

Static libraries Dynamic libraries

Are part of the built environment. Object files are
added to the executable. Have the .a extension.

Advantages :
• They are faster since all modules are in the same

file (once every thing is loaded in memory).
• Their distribution and installation are easier.
• Avoid dependency problems.
Drawbacks :
• Use more memory space to create a copy by each

executable file
• Slower compilation process all source is re-

compiled.

Are part of the run-time environment address of the
object files are added to the execution file. Have .so
extension

Advantages:
• Use less memory space.
• Source code is not re-compiled
• Faster compilation process
Drawbacks:
• Could cause dependency problems in application
• Compatibility problems if the library is removed

Object
File

Function
Library

Object
File

Pointer

Static Linking

Object
File

Function
Library

Dynamic Linking

Object
File

Pointer

Shared
Function
Library

Executable
Files

Library Vs Header Files (Static vs Dynamic)

Question: Which One Is Better ?
• Static: Takes longer to execute (needs to load in memory and recompile)
• Dynamic: Fast execution but compatibility issues

Libraries (Standard library examples)

We have used a number of builtin libraries of C. For example here are the library includes
from the first assignment:

• #include <stdlib.h>

This includes many useful functions. The functions of the stdlib.h (standard library) can be
classified into: conversion, memory, process control, sort and search, mathematics.

• #include <stdio.h>

It is used to include the standard input output library functions like printf() function.

• #include <time.h>

Find the runtimes of various function / Contains time and date function declarations to
provide standardized access to time/date manipulation and formatting.

• #include <math.h>

Includes many common math function.

Libraries (Standard library examples)

• #include <stdio.h>

• 160 lines of code

Source: gnu.org

https://www.gnu.org/software/m68hc11/examples/stdio_8h-source.html

Libraries (Standard library examples)
#include <time.h>

The time.h header defines four variable types (2 macro* and various functions for
manipulating date and time).

Variable

1. size_t: This is the unsigned integral type and is the result of the sizeof keyword.
size_t is commonly used for array indexing and loop counting

2. clock_t: This is a type suitable for storing the processor time.

3. time_t: This is a type suitable for storing the calendar time.

4. struct tm: This is a structure used to hold the time and date.

struct tm
{
int tm_sec; /* seconds, range 0 to 59 */
int tm_min; /* minutes, range 0 to 59 */
…
}

*whenever the compiler encounters a macro in a program, it will replace it with the macro value

Macro

A macro is a name given to a block of C statements as a pre-processor directive.

1. NULL: This macro is the value of a null pointer constant.

2. CLOCKS_PER_SEC: This macro represents the number of processor/system clocks
per second.

A computer's processor clock speed determines how quickly the central processing
unit (CPU) can retrieve and interpret instructions.

A good speed for gaming is widely considered anything from 3.5 to 4.0 GHz—that's 3.5
to 4 billion commands a second.

Libraries (Standard library examples)
#include <time.h>

Libraries (Standard library examples)
#include <time.h>
CLOCKS_PER_SEC

Libraries (Standard library examples)
#include <time.h>
CLOCKS_PER_SEC

Which element will be at arr[1][0][0]?

Libraries (Standard library examples)
#include <time.h>
CLOCKS_PER_SEC

Libraries (Standard library examples)
#include <time.h>
CLOCKS_PER_SEC

Libraries (Standard library examples)
#include <time.h>
CLOCKS_PER_SEC

Library
(implementation example)

• The code (Next Slide) fills an array with random numbers, sorts them
using a bubble sort, and then displays the sorted list.

• Since both the array a[] and the constant MAX are known globally, the
function you create needs no parameters, nor does it need to return
a result. However, you should use local variables for x, y, and t.

• But why use local variable ?

• Local variable are easy to debug as global
variable may be difficult to track when updated

• Local Variable pass values between subroutines
to avoid errors caused by unforeseen changes

Bubble sort animation source: Link

https://simple.m.wikipedia.org/wiki/File:Bubble_sort_animation.gif

Library

1. #include <stdio.h>

2. #define MAX 10

3. int a[MAX];

4. int rand_seed=10;

5. int rand()

6. {

7. rand_seed = rand_seed * 100;

8. return (unsigned int)(rand_seed /10) % 11;

9. }

10. void main()

11. {

12. int i,t,x,y;

13. /* fill array */

14. for (i=0; i < MAX; i++)

15. {

16. a[i]=rand();

17. printf("Unsorted %d: %d\n", i, a[i]);

18. }

18. /* bubble sort the array */
19. for (x=0; x < MAX-1; x++)
20. for (y=0; y < MAX-x-1; y++)
21. if (a[y] > a[y+1])
22. {
23. t=a[y];
24. a[y]=a[y+1];
25. a[y+1]=t;
26. }
27. /* print sorted array */
28. printf("--------------------\n");
29. for (i=0; i < MAX; i++)
30. printf("Sorted %d: %d\n", i,a[i]);
31. }

rand() % 10

Library
Original code (Slide 23)

1. #define MAX 10

2. int a[MAX];

3. int rand_seed=10;

4. int rand()

5. {

6. rand_seed = rand_seed * 100;

7. return (unsigned int)(rand_seed /10) % 11;

8. }

9. void bubble_sort(int m)

10. { //earlier sorting was in main function

11. int x,y,t;

12. for (x=0; x < m-1; x++)

13. for (y=0; y < m-x-1; y++)

14. if (a[y] > a[y+1])

15. {

16. t=a[y];

17. a[y]=a[y+1];

18. a[y+1]=t;

19. } }

20. void main()
21. {
22. int i,t,x,y;
23. /* fill array */
24. for (i=0; i < MAX; i++)
25. {
26. a[i]=rand();
27. printf("Unsorted %d: %d\n", i, a[i]);
28. }
29. bubble_sort(MAX);
30. /* print sorted array */
31. printf("--------------------\n");
32. for (i=0; i < MAX; i++)
33. printf("Sorted %d: %d\n", i,a[i]);
34. }

Try to implement the code

Library
(Further optimizing or creating library of code on Slide 25)

1. You can also generalize the bubble_sort function even more by passing in a[] as a parameter:

bubble_sort(int m, int a[])

2. This line says, "Accept the integer array a[] of any size as a parameter." Nothing in the body of
the bubble_sort function needs to change. To call bubble_sort, change the call to:

bubble_sort(MAX, a);

3. Note that &a has not been used in the function call even though the sort will change ‘a’. The
reason for this will become clear once you understand pointers.

4. Enter the following header file and save it to a file named util.h.

/* util.h */

extern int rand();

extern void bubble_sort(int, int []);

5. These two lines are function prototypes. The word "extern" in C represents functions that will
be linked in later. If you are using an old-style compiler, remove the parameters from the
parameter list of bubble_sort.

Library
(Code after following the steps on Slide 26)

• Enter the following code into a file named util.c

1. /* util.c */

2. #include "util.h"

3. int rand_seed=10;

4. int rand()

5. {

6. rand_seed = rand_seed * 100;

7. return (unsigned int)(rand_seed /10) % 11;

8. }

9. void bubble_sort(int m,int a[])

10. {

11. int x,y,t;

12. for (x=0; x < m-1; x++)

13. for (y=0; y < m-x-1; y++)

14. if (a[y] > a[y+1])

15. {
16. t=a[y];
17. a[y]=a[y+1];
18. a[y+1]=t;
19. }
20. }

/* util.h */
extern int rand();
extern void bubble_sort(int, int []);

Try to implement the code

Library

• Note that the file includes its own header file (util.h, on slide 27) and
that it uses quotes instead of the symbols < and > , which are used
only for system libraries.

• As you can see, this looks like normal C code.

• Note that the variable rand_seed, because it is not in the header file,
it cannot be seen or modified by a program using this library.

• This is called information hiding. Adding the word static in front of int
enforces the hiding completely.

Library

• Enter the following main program in a file
named main.c.

• This code includes the utility library. The
main benefit of using a library is that the
code in the main program is much shorter.

1. #include <stdio.h>
2. #include "util.h"
3. #define MAX 10
4. int a[MAX];
5. void main()
6. {
7. int i,t,x,y;
8. /* fill array */
9. for (i=0; i < MAX; i++)
10. {
11. a[i]=rand();
12. printf("%d\n",a[i]);
13. }
14. bubble_sort(MAX,a);
15. /* print sorted array */
16. printf("--------------------\n");
17. for (i=0; i < MAX; i++)
18. printf("%d\n",a[i]);
19.}

Output

*As I am using online C compiler so I cannot save
#include "util.h“. Students should implement the
code on slide 27 and slide 29)

Try to implement the code

Library

• Based on the example:

• Initial Code (Slide 23)

• Optimal Code (Slide 29)

• Initial code was long and debugging can be a concern (i.e. If you are working with a code
of more then 500 lines)

• Optimal code is easy to understand and to debug

• With its module based approach the segments of the code can be reuse later on

• Module based modification or further optimizing is comparatively easy to do

• Example: If you are working in a software house and they a MIS or CMC software's are
developed on regular bases. The common modules can be made in form of libraries and can
be used again. Even in case of minor modification a module can easily be modified and re-
used. Such an approach can save a lot of coding hours and effort from the programmers. Plus
existing modules can be further optimized based on ongoing work and experience.

End Of Lecture
Questions?

