
4th Lecture (Part – II)

Topics: Recursion

CS 2124: DATA STRUCTURES
Spring 2024

Topics

• Assignment – 2 (Any Questions)

• Mid-Term Exam (Discussion)

• Recursion

• Recursion (Properties)

• Recursion (Types)

• Recursion vs Iteration

• Example using Factorial

• Example using Fibonacci Sequence

• Recursion (Memory)

• Recursion (Advantages and Disadvantages)

• Recursion (Real world examples)

• Binary Search (Using Recursion and Iteration)

• Towers of Hanoi

Midterm Exams

• Data Structure (Midterm Exam – In person) – Thursday, 29th Feb

• Exam will be on Canvas

• Attendance is compulsory

• Location: NPB 1.226

• Timing:

Section Time/ NPB 1.226 Students

CS 2124 - 0C1
CS 2124-0CA 36734 10:00 – 10:30 30
CS 2124-0CB 36736 10:40 – 11:10 29

CS 2124 - 0D4
CS 2124-0DA 36738 11:30 – 12:00 30
CS 2124-0DB 36739 12:10 – 12:40 30

CS 2124 - 0E1
CS 2124-0EA 42879 01:30 – 02:00 30
CS 2124-0EB 42880 02:10 – 02:40 30

Recursion (Memory)

1. The first call to the function rfunc() having value a=5 will be a copy on the bottom of the stack, and it is also the copy that will
return at the end.

2. Meanwhile, the rfunc() will call another occurrence of the same function but with 1 subtracted, i.e., a=4.
3. Each time a new occurrence is called, it is stored at the top of the stack, which goes on until the condition is satisfied.
4. As the condition is unsatisfied, i.e., a=0, there will be no further calls, and each function copy stored in the stack will start to

return its respected values, and the function will now terminate.

Recursion (Memory)

What will be the Sequence of Digit output

Note: This code will not be part of any quiz or exam. It is only for implementation / understanding

Recursion (Memory)

The first time through MyFunc, count is 5. It fails the terminating check (it is not 0), so the recursive call is invoked, with (counter -1), 4.
This repeats, decrementing the value pushed onto the stack each time until counter == 0.
At this point, the terminating clause fires and the function simply returns the value of counter (0), usually in a register.

Continue >>>Note: This code will not be part of any quiz or exam. It is only for implementation / understanding

Recursion (Memory)

The next call up the stack, uses the returned value to print (0), then returns the value that was supplied into it when it was called (1).
This repeats:
• The next call up the stack, uses the returned value to print (1), then returns the value that was supplied into it when it was called (2). etc, till

you get to the top of the stack.

Note: This code will not be part of any quiz or exam. It is only for implementation / understanding Continue >>>

Recursion (Memory)

So, if MyFunc was invoked with 3 (Code on next slide), you'd get the equivalent of (ignoring return addresses etc from the stack):
• Call MyFunc(3) Stack: [3]
• Call MyFunc(2) Stack: [2,3]
• Call MyFunc(1) Stack: [1,2,3]
• Call MyFunc(0) Stack: [0,1,2,3]
• Termination fires (top of stack == 0), return top of stack(0).

// Flow returns to:
MyFunc(1) Stack: [1,2,3]
Print returned value (0) and address
return current top of stack (1)

// Flow returns to:
MyFunc(2) Stack: [2,3]
Print returned value (1) and address
return current top of stack (2)

// Flow returns to:
MyFunc(3) Stack: [3]
Print returned value (2) and address
return current top of stack (3)

// Flow returns to:
MyFunc(4) Stack: [3]
Print returned value (3) and address
return current top of stack (-1)

Recursion (Memory)

Source: LinkNote: This code will not be part of any quiz or exam. It is only for implementation / understanding

What will be the Sequence of Digits output

Recursion (Memory)

https://stackoverflow.com/questions/5631447/how-recursion-works-in-c

Recursion (Example)

• The green Dots that you are able to see in the above image are generated with the help of
recursions.

• Here recursion is used to generate all possible safe and unsafe moves of a particular piece of the
chess game.

• Generally, the safe moves are represented with the help of a Green dot and Red for the unsafe
ones.

Source: Link & Link

• Imagine that you want to find a file on your machine. You don’t want to look for it
manually, you can write a function to find it for you.

• How do you approach this?

https://takeuforward.org/recursion/application-of-recursion/
https://www.byte-by-byte.com/understanding-recursion/

Recursion (Example)

Source: Link & Link

• Imagine that you want to find a file on your machine. You don’t want to look for it manually, and you figure this is a good
exercise anyway, so you’re going to write a function to find it for you.

• How do you approach this?

1. We’ll start with the root directory.
2. Then we need to pick one of the sub-folder and look inside (i.e. tree data structure).
3. That sub-folder might have its own sub-folder, so we have to go deeper and deeper until there are no more sub-folders.
4. Then we go back and try one of the other sub-folders.

https://takeuforward.org/recursion/application-of-recursion/
https://www.byte-by-byte.com/understanding-recursion/

Recursion (Example – File Search)

SourceNote: This code will not be part of any quiz or exam. It is only for implementation / understanding

https://codeforwin.org/c-programming/c-program-to-list-all-files-in-a-directory-recursively

Binary Search (Revision)

• The binary search algorithm works by comparing the element to be searched by the middle
element of the array and based on this comparison follows the required procedure.

1. Case 1 : element = middle, the element is found return the index.

2. Case 2 : element > middle, search for the element in the sub-array starting from middle+1
index to n.

3. Case 3 : element < middle, search for element in the sub-array starting from 0 index to
middle -1.

Binary Search (Recursion vs Iteration)

• Iteration Method

• Do until the pointers low and high meet each other.

1. mid = (low + high)/2

2. if (x == arr[mid])

3. return mid

4. else if (x > arr[mid]) // x is on the right side

5. low = mid + 1

6. else // x is on the left side

7. high = mid - 1

• Iterative call is looping over the same block of code multiple times
• Recursive call is calling the same function again and again.

• Recursive Method
1. binarySearch(arr, x, low, high)
2. if low > high
3. return False
4. else
5. mid = (low + high) / 2
6. if x == arr[mid]
7. return mid
8. else if x > arr[mid] // x is on the right side
9. return binarySearch(arr, x, mid + 1, high)
10. else // x is on the left side
11. return binarySearch(arr, x, low, mid - 1)

Binary Search
(Iterative)

Try to implement and compute CPU
cycle

• Line 19 ??

Binary Search
(Iterative)

Try to implement and compute CPU cycle

• Line 19:
• If you have an array then sizeof(array)

returns the number of bytes the array
occupies.

• Since each element can take more
than 1 byte of space, you have to
divide the result with the size of one
element (sizeof(array[0])).

• This gives you number of elements in
the array.

Binary Search
(Iterative)

Try to implement and compute CPU
cycle

2 3 4 10 40 45

[0] [1] [2] [3] [4] [5]

Binary Search (Recursion)
Try to implement and compute CPU cycle

Towers of Hanoi

• Rules:

1. Start with n rings on rod 1 (n = 3 i.e. G, B, R)

2. Our goal is to move them all rings to rod 3

3. Can only move 1 ring at a time

4. Larger rings cannot be placed on smaller rings

• How many steps to solve the game?

G

B

R

Towers of Hanoi

• Rules:

1. Start with n rings on rod 1 (n = 3 i.e. G, B, R)

2. Our goal is to move them all rings to rod 3

3. Can only move 1 ring at a time

4. Larger rings cannot be placed on smaller rings

• How many steps to solve the game?

• Total Steps: 7

Towers of Hanoi

• Rods: A = Source ; B = Auxiliary, C = Destination

• If 1 disk = Simply move the 1 disk from source to destination (A -> C)

• If 2 disks = Move the disks to destination with the help of auxiliary rode (A -> B, A -> C, B -> C).

• If 3 disks = First move n-1 disk to Auxiliary with the help of Destination (Divide and conquer approach)
a) i.e. Move disk 1 and disk 2 to Auxiliary - B from Source – A

i. Move disk 1 from A -> C
ii. Move disk 2 from A -> B
iii. Move disk 1 from C -> B

b) Now Source – A has 1 disk and Destination – C has no disk. We can simply move disk 3 from A -> C.
c) Next we have to move the disks from Auxiliary – B to Destination – C with the help of Source – A.

i. Move disk 1 from B -> A
ii. Move disk 2 from B -> C
iii. Move disk 1 from A -> C

• For n = 1 simply move disk from Source to Destination

• For n > 1 move disks from Source to Destination with the help of Auxiliary

Towers of Hanoi
Will the following Program solve the game or not?

A B C

1
2
3

Source: Link

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi-2/

Towers of Hanoi

Steps A B C

0 1,2,3

1 2,3 1

2 3 2 1

3 3 1,2

4 1,2 3

5 1 2 3

6 1 2,3

7 1,2,3

• Step 0 = 1,2,3 mean disk 1 is on top and disk 3 is at bottom.
• The table is a visual representation of the output. Starting from Step:1
• We can further optimize it (in term of understanding) to see how these disk are moved as per discussion

Towers of Hanoi
(Optimizing to have better understanding)

A B C

1
2
3

• Line 7 & line 12 will have same values
or different ?

• i.e. will there be same values printed
at any time during runtime

Towers of Hanoi
Will the same algorithm/code (i.e. slide) work for 4 disks?
To validate if the program works, fill the table as shown on slide 18.

Steps A B C

0 1,2,3,41. #include <stdio.h>
2. void towerOfHanoi(int n, char from_rod, char to_rod, char aux_rod)
3. {
4. if (n == 1)
5. {
6. printf("\n Move disk 1 from rod %c to rod %c", from_rod, to_rod);
7. return;
8. }
9. towerOfHanoi(n-1, from_rod, aux_rod, to_rod);
10. printf("\n Move disk %d from rod %c to rod %c", n, from_rod, to_rod);
11. towerOfHanoi(n-1, aux_rod, to_rod, from_rod);
12. }
13. int main()
14. {

15. int n = 4; // Number of disks
16. printf("<Summer 2023>");
17. towerOfHanoi(n, 'A', 'C', 'B'); // A, B and C are names of rods
18. return 0;
19. }

Towers of Hanoi

Steps A B C

0 1,2,3,4

Recursion (Example: MiniMax Algorithm for Tic Tac Toe)

• The MiniMax algorithm is a recursive algorithm used to determine the best move for a player in
a game with perfect information, such as Tic Tac Toe.

• It aims to maximize the player’s outcome while assuming that the opponent will also make
optimal moves.

• The algorithm considers all possible moves and their consequences, thus enabling the player to
make informed decisions.

