
CS 2124: DATA STRUCTURES
Spring 2024

6th Lecture

Topics: Advanced Linked Lists and Priority Queues

Quiz (22nd Feb, Thursday)

• Points: 5

• Date: 22nd Feb

• Quiz availability Time: 6:00 AM till End of day (11: 58 PM)

• Number of MCQ: 12 (Each MCQ Points vary based on difficulty)

• Once the Quiz starts students will have 24 Min to complete it.

• The quiz cannot be paused or stopped. It must be attempted in one sitting

• Kindly do not refresh or go back to the previous question (press back on the browser) as that is not allowed.

• One question will be visible at one time.

• Once you answer the question (submit) it cannot be changed

❖ Students with SDS approval only need to attempt the first 6 questions that they receive on Canvas.

❖ After completion do email for grade scaling

Topics
• Circular LLL (Linear Linked List)

• Singly LinkedList (L.L) as Circular L.L

• Algorithm

• Implementation

• Operation - Insertion at Front

• Operation - Insertion at Last

• Operation - Delete First Element

• Operation – Searching

• Applications

• Dual LinkedList (DLL)

• Memory Representation and Operations on a DLL

• Insertion At Beginning Of DLL

• Insertion At End Of DLL

• Deletion At Beginning Of DLL

• Deletion After A Specified Node

• Circular DLL

• Implementation

• Priority Queues

• Priority Queues – Characteristics

• Priority Queues – Implementation

Circular LLL (Linear Linked List)

• Circular Linked List is a variation of Linked list in which the first element points to the last
element and the last element points to the first element.

• Both Singly Linked List and Doubly Linked List can be made into a circular linked list.

Question:
Which Approach is better ?

Separate Head pointer or imbedded?

Circular LLL (Linear Linked List)

• Singly Linked List as Circular: In singly linked list, the next pointer of the last node points to the first
node.

• Doubly Linked List as Circular: In doubly linked list, the next pointer of the last node points to the first
node and the previous pointer of the first node points to the last node making the circular in both
directions.

• The last link's next points to the first link of the list in both cases of singly as well as doubly linked list.

• The first link's previous points to the last of the list in case of doubly linked list.

Figure 1 =

Figure 2 =

Singly LinkedList as Circular
(Algorithm)

1. Create a node

I. Data

II. Pointer to point next node

2. If first node, create node and place data with null as pointer (as it’s the only node)

I. Data

II. Pointer = null

3. Else last node contains the reference of the new node and new node contains the reference of the
previous/first node

I. Data

II. Last node pointer = next node address

III. New node pointer = previous/first node address (insertion at end)

LinkedList
(Single LinkedList – Previous Lecture)

LinkedList
(Single Circular LinkedList – Insertion at Front Part 1/3)

Head ptr

Data Nxt-Ptr

Newly inserted node is the first node

Continue >>

LinkedList
(Single Circular LinkedList – Insertion at Front Part 2/3)

Continue >>

Head ptr

Data Nxt-PtrData Nxt-Ptr

New

LinkedList
(Single Circular LinkedList – Insertion at Front) Part 3/3)

Continue >>

LinkedList (Single Circular LinkedList – Insertion at Last)

• Insertion at the end of the list

• To insert a node at the end of the list, follow these steps:

• Create a node, say T

• Make T -> next = last -> next

• last -> next = T

• last = T

Last -> next

LinkedList (Single Circular LinkedList – Insertion at Last – Part 1/3)

Using the same base code as Insertion at beginning.
Only replacing the node add function in ELSE statement

Head ptr

Data Nxt-PtrData Nxt-Ptr

New

LinkedList (Single Circular LinkedList – Insertion at Last – Part 2/3)

LinkedList (Single Circular LinkedList – Insertion at Last – Part 3/3)

LinkedList (Single Circular LinkedList – Insertion in L.L)

• Insert a new node in between the list.

• If the list is empty, both head and tail will point to new node.

• If the list is not empty, then.

• We will define two nodes

• Current (current will point to the node previous to temp), and

• Temp (temp will point to head).

• We iterate through the list till desired-point is reached (i.e. incrementing temp to temp.next)

• Then, insert the new node in between current and temp.

• Current -> next node will be new and the new -> next node will be temp.

Additional Source: Link

Try to code this by your self

https://www.javatpoint.com/program-to-insert-a-new-node-at-the-middle-of-the-circular-linked-list

LinkedList
(Single Circular LinkedList – Insertion at Last and Delete First Element)

Using the same base code as Insertion at beginning & end.

temp NULL

First Add -> Last Last Add -> First

Value 10 20 30

Own Add …f2a0 …f6d0 …f6f0

Next Add …f6d0 …f6f0 …f2a0

LinkedList (Single Circular L.L – Insertion at Last and Delete First Element) – Part 1/3

LinkedList (Single Circular L.L – Insertion at Last and Delete First Element) – Part 2/3

LinkedList (Single Circular LinkedList – Insertion at Last and Delete Last Element)

• Scenario (the list contains single element)

• If the list contains single node then, the condition head → next == head will become true. In this case, we need
to delete the entire list and make the head pointer free. This will be done by using the following statements.

• if(head->next == head)
• {
• head = NULL;
• free(head);
• }

LinkedList (Single Circular LinkedList – Insertion at Last and Delete Last Element)

• Scenario (the list contains more than one element)
• If the list contains more than one element, then in order to delete the last element, we need to reach the last

node.
• We also need to keep track of the second last node of the list. For this purpose, the two pointers ptr and preptr

are defined. The following sequence of code is used for this purpose.

• ptr = head;
• while(ptr ->next != head)
• {
• preptr=ptr;
• ptr = ptr->next;
• }
• preptr->next = ptr -> next;
• free(ptr);

• We need to make just one more pointer adjustment. We need to make the next pointer of preptr point to the
next of ptr (i.e. head) and then make pointer ptr free.

LinkedList (Single Circular LinkedList – Searching)

• Searching in circular singly linked list needs traversing
across the list.

• The item which is to be searched in the list is matched
with each node data of the list once and if the match
found then the location of that item is returned otherwise
-1 is returned.

1. Step 1: SET PTR = HEAD
2. Step 2: Set I = 0
3. STEP 3: IF PTR = NULL

1. WRITE "EMPTY LIST"
2. GOTO STEP 8
3. END OF IF

4. STEP 4: IF HEAD → DATA = ITEM
1. WRITE i+1 RETURN [END OF IF]

5. STEP 5: REPEAT STEP 5 TO 7 UNTIL PTR->next != head
6. STEP 6: if ptr → data = item

1. write i+1
2. RETURN
3. End of IF

7. STEP 7: I = I + 1
8. STEP 8: PTR = PTR → NEXT [END OF LOOP]
9. STEP 9: EXIT

Circular LLL (Linear Linked List)

• Circular Linked List Applications:

1. It is used in multiplayer games to give a chance to each player to play the game.

2. Multiple running applications can be placed in a circular linked list on an operating system.
The OS keeps on iterating over these applications.

LinkedList (Dual LinkedList)

Doubly linked list is a complex type of linked list in which a node contains a pointer to the previous as well as the
next node in the sequence. Therefore, in a doubly linked list, a node consists of three parts: node data, pointer to
the next node in sequence (next pointer) , pointer to the previous node (previous pointer).

• struct node
• {
• struct node *prev;
• int data;
• struct node *next;
• }

The prev part of the first node
and the next part of the last node
will always contain null indicating
end in each direction.

• struct node
• {
• struct node *prev;
• int data;
• struct node *next;
• };
• struct node *head;

• struct DLLNode {
• int info;
• struct node *left, *right;
• };

LinkedList (Dual LinkedList)

Is this going to work ??

LinkedList (Dual LinkedList)

