
• 7th Lecture

• Topics: Introduction to Trees

CS 2124: DATA STRUCTURES 
Spring 2024



Topics

1. Introduction to Trees

I. Binary Trees

i. Types of Binary Trees

II. Building A Binary Search Tree (BST)

i. Insert into an empty BST

ii. Duplicate Removal in BST

III. Binary Tree Traversal

i. Preorder Traversal

ii. In order Traversal

iii. Post order Traversal

2. Expressions as Trees

3. Building Trees

I. Binary Trees: Dynamic Nodes

4. Traversal Implementation: Recursive
5. Traversal Implementation: Using Stacks
6. Applications

• Assignment:
1. No PDF file
2. A copy paste of output in their PDF file rather then screenshot.
3. Screenshot of entire screen rather then the code and output (like in lectures)
4. EXE file being submitted in zip file on Canvas



Introduction (What we have covered)

• There are many basic data structures that can be used to solve application problems.

• Array is a good static data structure that can be accessed randomly and is fairly easy to
implement.

• Insertion and deletion can be time consuming due to memory management

• Array are not dynamic (i.e. The size of an array is determined at compile time)



Introduction (What we have covered)

• Linked Lists on the other hand is dynamic and is ideal for application that requires frequent
operations such as add, delete, and update.

• One drawback of linked list is that data access is sequential.

• Then there are other specialized data structures like, stacks and queues that allows us to solve
complicated problems using these restricted data structures.



Introduction

• One of the disadvantages of using an array (unsorted) or linked list to store data is the time
necessary to search for an item.

• Since both the arrays and Linked Lists are linear structures the time required to search a
“linear” list is proportional to the size of the data set.

• For example, if the size of the data set is n, then the number of comparisons needed to find
(or not find) an item may be as bad as some multiple of n.



Introduction

• In this lecture lets Extend the concept of linked data structure (linked list, stack, queue) to a
structure that may have multiple relations among its nodes.

• Such a structure is called a tree.

• A tree is a collection of nodes connected by directed (or undirected) edges.

• Applications
1. Storing naturally hierarchical data
2. Database indexing
3. Parsing (Process of breaking down code into its component)

4. Artificial Intelligence
5. Cryptography



Tree

• A tree is a nonlinear data structure, compared to arrays, linked
lists, stacks and queues which are linear data structures.

• A tree can be empty with no nodes or a tree is a structure
consisting of one node called the root and zero or one or more
subtrees.

• A tree has following general properties:

• One node is distinguished as a root (A)

• Every node (exclude a root) is connected by a directed edge
from exactly one other node

• A direction is: parent -> children

A is a parent of B, C, D,
B is called a child of A.
B is a parent of E, F, K

A

B C D

E F K



Tree

• In the picture, the root has 3 subtrees.
• Subtree Root:

• Node B
• Node K
• Node D

A

B C D

E K F G

L



Tree

• In the picture, the root has 3 subtrees (i.e. B, K, D)
• Each node can have arbitrary number of children.
• Nodes with no children are called leaves, or external nodes.

• In the picture, C, E, F, L, G are leaves or external nodes.
• Nodes, which are not leaves, are called internal nodes.
• Internal nodes have at least one child.

A

B C D

E K F G

L



Tree

• In the picture, the root has 3 subtrees (i.e. B, K, D)
• Each node can have arbitrary number of children.
• Nodes with no children are called leaves, or external nodes.

• In the picture, C, E, F, L, G are leaves or external nodes.
• Nodes, which are not leaves, are called internal nodes.
• Internal nodes have at least one child.
• Nodes with the same parent are called siblings.

• In the picture, B, C, D are called siblings.

A

B C D

E K F G

L



Tree

• In the picture, the root has 3 subtrees (i.e. B, K, D)
• Each node can have arbitrary number of children.
• Nodes with no children are called leaves, or external nodes.

• In the picture, C, E, F, L, G are leaves or external nodes.
• Nodes, which are not leaves, are called internal nodes.
• Internal nodes have at least one child.
• Nodes with the same parent are called siblings.

• In the picture, B, C, D are called siblings.
• The depth of a node is the number of edges from the root to the

node.
• The depth of K is 2.

A

B C D

E K F G

L



Tree

• In the picture, the root has 3 subtrees (i.e. B, K, D)
• Each node can have arbitrary number of children.
• Nodes with no children are called leaves, or external nodes.

• In the picture, C, E, F, L, G are leaves or external nodes.
• Nodes, which are not leaves, are called internal nodes.
• Internal nodes have at least one child.
• Nodes with the same parent are called siblings.

• In the picture, B, C, D are called siblings.
• The depth (d) of a node is the number of edges from the root to the

node.
• The depth of K is 2.

• The height (h) of a node is the number of edges from the node to the
deepest leaf.
• The height of B is 2.

A

B C D

E K F G

L



Tree

• In the picture, the root has 3 subtrees (i.e. B, K, D)
• Each node can have arbitrary number of children.
• Nodes with no children are called leaves, or external nodes.

• In the picture, C, E, F, L, G are leaves or external nodes.
• Nodes, which are not leaves, are called internal nodes.
• Internal nodes have at least one child.
• Nodes with the same parent are called siblings.

• In the picture, B, C, D are called siblings.
• The depth of a node is the number of edges from the root to the

node.
• The depth of K is 2.

• The height of a node is the number of edges from the node to the
deepest leaf.
• The height of B is 2.

• The height of a tree is a height of a root.

A

B C D

E K F G

L



Height (h) and 
depth (d) of each 

node in a tree Image Source

https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/


Binary Tree

• A binary tree is a structurally complete data structure in which each node has at most two
children.

• A binary tree usually has two nodes, called the left and right nodes, with the left being less
than the right.

• Binary trees are generally used for quick storage and retrieval of data. Because each node can
only have two children, it is easy to find a particular data piece without searching through the
entire structure.



Binary Tree

• Additionally, binary trees can be traversed using either a recursive or iterative algorithm.

• As a result, a binary tree in the data structure is often used when performance is critical, such
as in real-time applications.

• Binary search tree (BST): Used to search applications where data is continuously entering and leaving.
• Binary space partition: Used in 3D video games to determine what objects need to be rendered.
• Binary trees: Used by high-bandwidth routers for storing router tables, implementing dictionaries, spelling checking etc.



Terminologies Associated with Binary Trees

• Ancestor Nodes: Any node that is higher up in the tree than a given child node.

• Descendant Nodes: Any node that is lower down in the tree than a given parent node.

• Climbing/Ascending: Traversing from leaf to root

• Walking/Descending: Traversing from root to leaf

• Root Node, Child Node, Sibling Nodes, Leaf Nodes, Internal Nodes, Height, Depth (Already discussed)



Types of Binary Tree (Completion of levels)

Full Binary Tree: Every parent 
node/internal node has 

either two or no children.

Parent node



Full Binary Tree: Every parent 
node/internal node has 

either two or no children.

Perfect Binary Tree: Every 
internal node has exactly two 

child nodes and all the leaf 
nodes are at the same level

Types of Binary Tree (Completion of levels)

Leaf Nodes same level

Internal Nodes



Full Binary Tree: Every parent 
node/internal node has 

either two or no children.

Perfect Binary Tree: Every 
internal node has exactly two 

child nodes and all the leaf 
nodes are at the same level

A complete binary tree is just like a full binary tree, 
but with two major differences

1. Every level must be completely filled, except
possibly the last level

2. All the leaf elements must lean towards the left.
• The last leaf element might not have a right

sibling i.e. a complete binary tree doesn't have to
be a full binary tree.

Types of Binary Tree (Completion of levels)



• Skewed Binary Tree

Types of Binary Tree (Completion of levels)

Left Skew

Right Skew

A skewed binary tree is a pathological/degenerate tree in which the tree is either
dominated by the left nodes or the right nodes. Thus, there are two types of
skewed binary tree: left-skewed binary tree and right-skewed binary tree.



• Skewed Binary Tree

Types of Binary Tree (Completion of levels)

Left Skew

Right Skew

A skewed binary tree is a pathological/degenerate tree in which the tree is either
dominated by the left nodes or the right nodes. Thus, there are two types of skewed
binary tree: left-skewed binary tree and right-skewed binary tree.

Degenerate (or pathological) tree
A Tree where every internal node has one child. Such trees are performance-wise
same as linked list.
A degenerate or pathological tree is a tree having a single child either left or right.

Degenerate (or pathological) tree



Types of Binary Tree

• Paper: Skewed Binary Search Trees (Source: Link)

• In this paper we present an experimental study of various memory layouts of static skewed binary search trees,
where each element in the tree is accessed with a uniform probability.

• Our results show that for many of the memory layouts we consider skewed binary search trees can perform better
than perfect balanced search trees.

• The improvements in the running time are on the order of 15%.

• Previous work has shown that a dominating factor over the running time for a search is the number of cache
faults performed, and that an appropriate memory layout of a binary search tree can reduce the number of cache
faults by several hundred percent.

Memory Cache

Web Cache

Application/software Cache

Data Cache

Distributed Cache

Application/software output Cache

https://link.springer.com/chapter/10.1007/11841036_63


Binary Tree (Array )

Source: Link

Trees can be represented in two ways :
• Dynamic Node Representation (Linked Representation).
• Array Representation (Sequential Representation).

https://www.enjoyalgorithms.com/blog/introduction-to-binary-tree


Binary Search Tree (BST)

• Binary search tree is a data structure that quickly allows us to
maintain a sorted list of numbers.

• It is called a binary tree because each tree node has a
maximum of two children.

• It is called a search tree because it can be used to search for
the presence of a number in O(log(n)) time.



Binary Search Tree (BST)

• Binary search tree is a data structure that quickly allows us to
maintain a sorted list of numbers.

• It is called a binary tree because each tree node has a
maximum of two children.

• It is called a search tree because it can be used to search for
the presence of a number in O(log(n)) time.



Binary Search Tree (BST)

• Binary search tree is a data structure that quickly allows us to
maintain a sorted list of numbers.

• It is called a binary tree because each tree node has a
maximum of two children.

• It is called a search tree because it can be used to search for
the presence of a number in O(log(n)) time.

• The properties that separate a binary search tree from a regular
binary tree is

1. All nodes of left subtree are less than the root node

2. All nodes of right subtree are more than the root node

3. Both subtrees of each node are also BSTs i.e. they have the
above two properties



Binary Search Tree(BST)

8

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST)

8

3

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST)

8

3 10

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST)

8

3 10

1

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST)

8

3 10

1 6

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST)

8

3 10

1 6

4

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST)

8

3 10

1 6

4

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST)

8

3 10

1 6

4

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array

Searching ?



Binary Search Tree(BST)

8

3 10

1 6

4

Elements: 8,3,10,1,6,4
• Insert a new node starting at the root (set current node to root)

· If new node is < current, move left
· If new node is >= current, move right
· Repeat this until current is null. Insert it here.

• This is similar to binary search of an array



Binary Search Tree(BST - Example)

8

3 10

1 6

2

Elements: 8,3,10,1,6,2

Is this a BST?

Elements: 5,2,7,1,7,2

5

2 7

1 72

See node 2!!
Not correctly places in the tree 



Binary Search Tree(BST - Example)

Elements: 5,2,7,1,7,2

5

2 7

1 72

1. Store the duplicate element in the left or right subtree

2. Stores the count of the node. So the count of Node 5 will be 2

Source: Link

https://www.codingninjas.com/studio/library/handling-duplicates-in-bst

