
• 7th Lecture

• Topics: Introduction to Trees (Part – II)

CS 2124: DATA STRUCTURES
Spring 2024

Topics

1. Introduction to Trees

I. Binary Trees

i. Types of Binary Trees

II. Building A Binary Search Tree (BST)

i. Insert into an empty BST

ii. Duplicate Removal in BST

III. Binary Tree Traversal

i. Preorder Traversal

ii. In order Traversal

iii. Post order Traversal

2. Expressions as Trees

3. Building Trees

I. Binary Trees: Dynamic Nodes

4. Traversal Implementation: Recursive
5. Traversal Implementation: Using Stacks
6. Applications

Duplicates Removal in Array using BST (Application of BST)

• Input: a[] = {1, 2, 3, 2, 5, 4, 4}

• The duplicates in the array can be
removed using Binary Search Tree.

Duplicates Removal in Array using BST (Application of BST)

• Input: a[] = {1, 2, 3, 2, 5, 4, 4}

• The duplicates in the array can be
removed using Binary Search Tree.

1

2

3

Next Element is 2

Duplicates Removal in Array using BST (Application of BST)

• Input: a[] = {1, 2, 3, 2, 5, 4, 4}

• The duplicates in the array can be
removed using Binary Search Tree.

1

2

3

The idea is to create a BST using the array elements with the conditions:
1. First element is taken as the root(parent)
2. Element “less” than root = Left child
3. Element “greater” than root = Right child
4. Since no condition for “equal” exists the duplicates are automatically removed when we form a binary

search tree from the array elements.

Duplicates Removal in Array using BST (Application of BST)

• Input: a[] = {1, 2, 3, 2, 5, 4, 4}

• The duplicates in the array can be
removed using Binary Search Tree.

1

2

3

The idea is to create a BST using the array elements with the conditions:
1. First element is taken as the root(parent)
2. Element “less” than root = Left child
3. Element “greater” than root = Right child
4. Since no condition for “equal” exists the duplicates are automatically removed when we form a binary

search tree from the array elements.

5

4

Duplicates Removal in Array using BST (Application of BST)

• Input: a[] = {1, 2, 3, 2, 5, 4, 4}

• Output: a[] = {1, 2, 3, 4, 5}

• The duplicates in the array can be
removed using Binary Search Tree.

1

2

3

The idea is to create a BST using the array elements with the conditions:
1. First element is taken as the root(parent)
2. Element “less” than root = Left child
3. Element “greater” than root = Right child
4. Since no condition for “equal” exists the duplicates are automatically removed when we form a binary

search tree from the array elements.

5

4

Duplicates Removal in Array using BST

5

2 7

Root = 5

Line 22: 2 (Data) < 5(Root->Data) Line 24: 7 (Data) > 5(Root->Data)

Duplicates Removal in Array using BST

In-Order, Pre-Order and Post-Order traversal will be discussed in upcoming slides

Duplicates Removal in Array using BST

Output ?

Binary Tree vs Binary Search Tree (BST)

BINARY TREE BINARY SEARCH TREE

Definition
BINARY TREE is a nonlinear data structure where each
node can have at most two child nodes.

BINARY SEARCH TREE is a node based binary tree that
further has right and left subtree that too are binary
search tree.

Types
Full binary tree, Complete binary tree, Extended
Binary tree and more

AVL tree, Splay Tree, T-trees and more

Structure
In BINARY TREE there is no ordering in terms of how
the nodes are arranged

In BINARY SEARCH TREE the left subtree has elements
less than the nodes element and the right subtree has
elements greater than the nodes element.

Data
Representation

Data Representation is carried out in a hierarchical
format.

Data Representation is carried out in the ordered
format.

Duplicate Values Binary trees allow duplicate values. Binary Search Tree does not allow duplicate values.

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root -> left subtree -> right subtree

• In-order: left subtree -> root -> right subtree

• Post-order: left subtree -> right subtree -> root

D → B → E → A → F → C → G

A → B → D → E → C → F → G

D → E → B → F → G → C → A

A

B

D E

C

F G

Tree Traversals (A trick to remember)

A → B → D → E → C → F → G D → B → E → A → F → C → G D → E → B → F → G → C → A

Pre-order
1. Root
2. Left Subtree
3. Right Subtree

In-order
1. Left Subtree
2. Root
3. Right Subtree

Post-order
1. Left Subtree
2. Right Subtree
3. Root

Tree Traversals (Another trick to remember the traversal order)

In-order Traversal

D → B → E → A → F → C → G

Pre-order Traversal

A → B → D → E → C → F → G

Post-order Traversal

D → E → B → F → G → C → A

Tree Traversals: Practice

Which one makes sense for evaluating this expression tree?

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

+ * 2 4 5

2 * 4 + 5

2 4 * 5 +

Expressions as Trees

• We can also divide the tree into sub-trees and then traverse them

• (a+b)*(c-d)
*

+

a b

-

c d

+

a b

-

c d

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

* + a b – c d

a + b * c - d

a b + c d - *

Expressions as Trees
• (2 (a - 1) + (3 b))

+

-2

a 1

3 b

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

-

a 1

3 b

-2

a 1

Expressions as Trees
• (2 (a - 1) + (3 b))

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

-

a 1

3 b

-2

a 1

Postfix : ?
Prefix : ?

+

-2

a 1

3 b

Root

Sub Tree (Root -> L)

Sub Tree (Root -> R)

Sub Tree (Root -> L -> R)

Tree Traversals

1

2

4

5

3

Root

Root -> Right

Root -> Left

Root -> Left -> Left

Root -> Left -> Right
In-order
1. Left Subtree,
2. Root,
3. Right Subtree

Output?

Tree Traversals

1

2

4

5

3

Root

Root -> Right

Root -> Left

Root -> Left -> Left

Root -> Left -> Right

Pre-order
1. Root,
2. Left Subtree,
3. Right Subtree

Output?

Tree Traversals

1

2

4

5

3

Root

Root -> Right

Root -> Left

Root -> Left -> Left

Root -> Left -> Right
Post-order
1. Left Subtree,
2. Right Subtree,
3. Root

Output?

Applications

Dull DS

DS memes

How to sleep in DS class

DS leave us alone

Breadth-first search (BFS)
• BFS is a graph traversal algorithm that

explores nodes in the order of their distance
from the roots, where distance is defined as
the minimum path length from a root to the
node.

Depth-first search (DFS)
• DFS goes through a graph as far as possible

in one direction before backtracking to other
nodes. DFS is similar to the pre-order tree
traversal, but you need to make sure you
don't get stuck in a loop. To do this, you'll
need to keep track of which Nodes have
been visited.

Lesson: 12

Tree Traversals (Using Stacks)

1

2

4

5

3

Root

Root -> Right

Root -> Left

Root -> Left -> Left

Root -> Left -> Right

In-order
1. Left Subtree,
2. Root,
3. Right Subtree

• End goal is to print the Tree in In-order
• 4 2 5 1 3

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Applications (Huffman Encoding)

• The idea is to assign variable-length codes to input characters, lengths of the assigned codes are based on the
frequencies of corresponding characters (i.e. more bits for rare letters, and fewer bits for common letters).

• The variable-length codes assigned to input characters are Prefix Codes, means the codes (bit sequences) are
assigned in such a way that the code assigned to one character is not the prefix of code assigned to any other
character.

• This is how Huffman Coding makes sure that there is no ambiguity when decoding the generated bitstream.

Applications (Huffman Encoding)

13-character string "go go gophers" requires 13 * 8 = 104 bits

Table-1

8 bits = one character

0 0

0 1

1 0

1 1

Two Bits can represent 4 values

Applications (Huffman Encoding)

13-character string "go go gophers" requires 13 * 8 = 104 bits Since there are only 8 different characters in "go go
gophers", it is possible to use only 3-bits to encode the
8 different characters.

Table-1

8 bits = one character

1 g 000

2 o 001

3 p 010

4 h 011

5 e 100

6 r 101

7 s 110

8 \space 111

Applications (Huffman Encoding)

13-character string "go go gophers" requires 13 * 8 = 104 bits Since there are only 8 different characters in "go go
gophers", it is possible to use only 3-bits to encode the
8 different characters.

13-character string "go go gophers" requires 13 * 3 = 39 bits

"go go gophers" would be encoded as:
000 001 111 000 001 111 000 001 010 011 100 101 110

Table-1

Table-2

8 bits = one character

Applications (Huffman Encoding)

Code bit * Frequency = Total Bits = 174

9

Huffman Tree (Fix Bit Representation)

Applications (Huffman Encoding)

Code bit * Frequency = Total Bits = 174

9

But we want to further reduce the number of bits i.e. less then 174 bits

Huffman Tree (Fix Bit Representation)

Huffman Tree (Variable Bit Representation) to reduce the bits

Step: 1

Step: 1

1+3 = 4
Step: 1

1+3 = 4
Step: 1

Step: 2
4+4 = 8

1+3 = 4Step: 1

Step: 2

Step: 3

1+3 = 4Step: 1

Step: 2

Step: 3

10 + 8 = 18

1+3 = 4Step: 1

Step: 2

Step: 3

Step: 4

1+3 = 4

18 is higher then the
remaining characters
in the table

Step: 1

Step: 2

Step: 3

Step: 4

Step: 5

Step: 5
Step: 6

Step: 5
Step: 6

Step: 5
Step: 6

Step: 7

Step: 5
Step: 6

Step: 7
Step: 8 (Assign Bits to the tree)

Step: 5
Step: 6

Step: 7 Step: 8

Applications (Huffman Encoding)

149

3*10=30
(i.e. 110 = 3 bits)

Fix bit (Total Bits) = 174 (Slide)

Applications (Huffman Encoding)

Char Freq

B 5

I 2

G 1

𝑆𝑝 3

O 1

T 1

E 1

S 2

A 3

N 2

Applications (Huffman Encoding)
Char Freq Code

B 5 00

I 2 1101

G 1 11111

𝑆𝑝 3 100

O 1 11110

T 1 11101

E 1 11100

S 2 1100

A 3 01

N 2 101

4

2

E T

2

O G

4

S I

8

5

𝑆𝑝 N

13

8

B A

21

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1
1

Applications of Huffman Coding
Real-world examples of Huffman Coding in practice (Link)

• Lossless Image Compression

• A simple task for Huffman coding is to encode images in a lossless manner. This is useful for precise and
critical images such as medical images and Very High Resolution (VHR) satellite images, where it is
important for the data to remain consistent before and after compression.

• Image with a diverse set of colors:
• This image has a broad range of colors. It has many red pixels (in

the horse), green pixels (in the grass), and blue pixels (in the sky).
Intuition hints that this image may not be very compressible. The
entropy of this image is calculated to be 5.39. The results of the
image compression with Huffman coding are shown below:

Compression Ratio Bits/Points after

1.02 7.81

The values that each number in the matrix can take on is an integer from 0 to 255. Encoding this range of numbers requires an 8-bit number.

https://experiencestack.co/applications-of-huffman-coding-73c661f9ef03

