
8th Lecture

Topics: Heaps





Heap (Applications)

• Priority Queues: (Usually Heap Property) Priority queues can be efficiently implemented using Binary Heap
because it supports insert(), delete() and extractmax(), decreaseKey() operations in O(log N) time.

• Order statistics: The Heap data structure can be used to efficiently find the kth smallest (or largest) element in an
array.

• Sorting:

• Max-heap are use for heapsorting



Heap (Applications - Sorting)

Image Source: Link

https://harshitjain.home.blog/2019/05/23/heap-sort/


Max-Priority Queue

Source

Is it a Max Heap Tree?

510

8

20

15

[1]

[2] [3]

[5][4]

20 15 8 10 5

[1] [2] [3] [4] [5]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

Is it a Max Heap Tree?

510

8

20

15

[1]

[2] [3]

[5][4]

20 15 8 10 22

[1] [2] [3] [4] [5]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

2210

8

20

15

[1]

[2] [3]

[5][4]

20 15 8 10 22

[1] [2] [3] [4] [5]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

1510

8

22

20

[1]

[2] [3]

[5]

Is it a Max Heap Tree?

[4]

22 20 8 10 15

[1] [2] [3] [4] [5]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

1510

8

13

20

[1]

[2] [3]

[5][4]

13 20 8 10 15

[1] [2] [3] [4] [5]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

1310

8

20

15

[1]

[2] [3]

[5][4]

20 15 8 10 13

[1] [2] [3] [4] [5]

1510

8

13

20

[1]

[2] [3]

[5][4]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

1310

8

20

15

[1]

[2] [3]

[5][4]

20 15 8 10 13

[1] [2] [3] [4] [5]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Max-Priority Queue

Source

10

8

15

13

[1]

[2] [3]

[4]

https://www.codesdope.com/blog/article/priority-queue-using-heap/


Heap (Applications - Case)

• I used a heap many years ago to optimize a program for Bell Canada.

• The program took in forecasts of future demand for data transfer between nodes in a large
network that spanned the country.

• The program could be configured in terms of the how to choose routes for the data transfer,
with the objective of minimizing cost of the required equipment overall.

• As a simple example, imagine allowing each node to transfer directly to the destination node vs
transmitting to a hub which would eventually route the data to it’s destination.

• Glenn Reid CEO - RJB Technology Inc.1999–present

Heap tress can be use for Djikstra's Algorithm i.e. It is used to find the shortest path between two nodes in a graph.



Heap (Applications - Case)
Source: u
Destination: y

U -> Y Paths:
• U->X->Y
• U->W->Y
• U->V->X->Y
• U->V->W->X->Y
• Etc..

u

Y=14

x

u

Y=13

w

Lesson 13: Dijkstra Algorithm
u

x

v

Y=8



Network Routing (Source: Link)

• Overview

• In this project you will implement Dijkstra’s algorithm to find paths through a graph representing a network
routing problem.

• Goals

• Understand Dijkstra’s algorithm in the context of a real world problem (Lesson 12: Dijkstra).

• Implement a priority queue with worst-case logarithmic operations.

• Compare two different priority queue data structures for implementing Dijkstra’s and empirically verify
their differences.

• Understand the importance of proper data structures/implementations to gain the full efficiency potential
of algorithms.

https://faculty.cs.byu.edu/~farrell/courses/CS312/projects/NetworkRouting.php


Network Routing (Source: Link)

https://faculty.cs.byu.edu/~farrell/courses/CS312/projects/NetworkRouting.php


Heap (Advantages and Disadvantages)

• Advantages of Heaps:

• Fast access to maximum/minimum element (O(1))

• Efficient Insertion and Deletion operations (O(log n))

• Flexible size

• Can be efficiently implemented as an array

• Suitable for real-time applications

• Disadvantages of Heaps:

• Not suitable for searching for an element other than maximum/minimum (O(n) in worst case)

• Extra memory overhead to maintain heap structure

• Slower than other data structures like arrays and linked lists for non-priority queue operations.



Building Huffman Tree (Variable Bit) using Heap

• Input is an array of unique characters along with their frequency of occurrences and output is Huffman Tree.

1. Create a leaf node for each unique character and build a min heap of all leaf nodes (Min Heap is used as a 
priority queue.) 

A. The value of frequency field is used to compare two nodes in min heap. 

B. Initially, the least frequent character is at root

2. Extract two nodes with the minimum frequency from the min heap.

3. Create a new internal node with a frequency equal to the sum of the two nodes frequencies. 

A. Make the first extracted node as its left child and the other extracted node as its right child. 

B. Add this node to the min heap.

4. Repeat steps#2 and #3 until the heap contains only one node. 

A. The remaining node is the root node and the tree is complete.



Building Huffman Tree using Heap
Character Frequency

a 5

b 9

c 12

d 13

e 16

f 45

Step 1. Build a min heap that contains 6 nodes where each node represents root of a tree with 
single node.

Step 2 Extract two minimum frequency nodes from min heap. Add a new internal node with 
frequency 5 + 9 = 14.



Building Huffman Tree using Heap

Character Frequency

c 12

d 13

Int-Node 14

e 16

f 45

Now min heap contains 5 nodes where 4 nodes are roots of trees with single element each, and 
one heap node is root of tree with 3 elements

Step 3: Extract two minimum frequency nodes from heap. Add a new internal node with frequency 
12 + 13 = 25



Building Huffman Tree using Heap

Character Frequency

c 12

d 13

Int-Node 14

e 16

f 45

Now min heap contains 5 nodes where 4 nodes are roots of trees with single element each, and 
one heap node is root of tree with 3 elements

Step 3: Extract two minimum frequency nodes from heap. Add a new internal node with frequency 
12 + 13 = 25



Building Huffman Tree using Heap

Character Frequency

Int-Node 14

e 16

Int-Node 25

f 45

Now min heap contains 4 nodes where 2 nodes are roots of trees with single element each, and two 
heap nodes are root of tree with more than one nodes

Step 4: Extract two minimum frequency nodes. Add a new internal node with frequency 14 + 16 = 30



Building Huffman Tree using Heap

Character Frequency

Int-Node 14

e 16

Int-Node 25

f 45

Now min heap contains 4 nodes where 2 nodes are roots of trees with single element each, and two 
heap nodes are root of tree with more than one nodes

Step 4: Extract two minimum frequency nodes. Add a new internal node with frequency 14 + 16 = 30



Building Huffman Tree using Heap

Character Frequency

Int-Node 25

Int-Node 30

f 45

Now min heap contains 3 nodes.

Step 5: Extract two minimum frequency nodes. Add a new internal node with frequency 25 + 30 = 55



Building Huffman Tree using Heap

Character Frequency

Int-Node 25

Int-Node 30

f 45

Now min heap contains 3 nodes.

Step 5: Extract two minimum frequency nodes. Add a new internal node with frequency 25 + 30 = 55



Building Huffman Tree using Heap

Character Frequency

f 45

Int-Node 55

Now min heap contains 2 nodes.

Step 6: Extract two minimum frequency nodes. Add a new internal node with frequency 45 + 55 = 100



Building Huffman Tree using Heap

Character Frequency

Int-Node 100
While moving to the left child, write 0 to the array. 
While moving to the right child, write 1 to the array.



Building Huffman Tree using Heap

While moving to the left child, write 0 to the array. 
While moving to the right child, write 1 to the array.

Char Code Freq Bits = Code*Freq

a 1100 5 20

b 1101 9 36

c 100 12 36

d 101 13 39

e 111 16 48

f 0 45 45

Total 224



Building Huffman Tree using Heap

While moving to the left child, write 0 to the array. 
While moving to the right child, write 1 to the array.

Char Code Freq Bits = Code*Freq

a 1100 5 20

b 1101 9 36

c 100 12 36

d 101 13 39

e 111 16 48

f 0 45 45

Total 224



Building Huffman Tree using Heap
Fix Bit VS Variable Bit

Char Code Freq Bits = Code*Freq

a 000 5 15

b 001 9 27

c 010 12 36

d 100 13 39

e 101 16 48

f 110 45 135

Total 300

• 2 bits = 00, 01, 10, 11 = 4 characters
• 3 bits = 000, 001, 010, 011, 100, 101, 110, 111 = 8 characters
• 2𝑛

• 2𝑛 ⇒ n = 2 ⇒ 4
• 2𝑛 ⇒ n = 3 ⇒ 8

Char Code Freq Bits = Code*Freq

a 1100 5 20

b 1101 9 36

c 100 12 36

d 101 13 39

e 111 16 48

f 0 45 45

Total 224



Applications of Huffman Coding
Real-world examples of Huffman Coding in practice (Link)

• Text Compression

• Huffman coding requires that it must know the distribution of the data before it can encode it. Adaptive
Huffman coding is an alternative because it can build a Huffman coding tree and encode the data in just a
single pass, but it is much more computationally demanding and slower than if the Huffman codes were
already known.

• Audio Compression

• Audio is another application area that benefits greatly from Huffman encoding when the scheme is required
to be lossless.

Table Source: Sampled-data audio signal compression with Huffman coding (IEEE Link)

https://experiencestack.co/applications-of-huffman-coding-73c661f9ef03
https://ieeexplore.ieee.org/document/1491556


Applications of Huffman Coding
Real-world examples of Huffman Coding

• Revisiting Huffman Coding: Toward Extreme Performance On Modern GPU Architectures (Link)

• Today's high-performance computing (HPC) applications are producing vast volumes of data, which are
challenging to store and transfer efficiently during the execution, such that data compression is becoming a
critical technique to mitigate the storage burden and data movement cost.

• Huffman coding is arguably the most efficient Entropy coding algorithm in information theory, such that it could
be found as a fundamental step in many modern compression algorithms such as DEFLATE.

• On the other hand, today's HPC applications are more and more relying on the accelerators such as GPU on
supercomputers, while Huffman encoding suffers from low throughput on GPUs, resulting in a significant
bottleneck in the entire data processing.

• In this paper, we propose and implement an efficient Huffman encoding approach based on modern GPU
architectures, which addresses two key challenges:

1) how to parallelize the entire Huffman encoding algorithm, including codebook construction, and

2) how to fully utilize the high memory-bandwidth feature of modern GPU architectures. The detailed contribution is
fourfold.

https://experts.illinois.edu/en/publications/revisiting-huffman-coding-toward-extreme-performance-on-modern-gp

