
Topics: AVL Trees and Segment Trees

Topics

• AVL (Adelson, Velski & Landis) Trees

• AVL Tree (Height vs Balance)

• AVL Tree (Balance)

• Rotations

• Left rotation

• Right rotation

• Left-Right rotation

• Right-Left rotation

• AVL Tree (Insertion)

• AVL Tree (Deletion)

• Segment Trees

• Segment Trees (Array to Tree)

• Segment Trees (Tree to Array)

• Segment Trees (Applications)

AVL (Adelson, Velski & Landis) Tree

• What if the input to binary search tree (BST) comes in a sorted (ascending or descending) manner?

What is the problem with this BST?

• It is observed that BST's worst-case performance is
closest to linear search algorithms, that is Ο(n).

• In real-time data, we cannot predict data pattern
and their frequencies.

• So, a need arises to balance out the existing BST.

Search 10 Search 31

AVL Tree

• AVL are height balancing binary search tree (BST). AVL trees have the property of dynamic self-balancing in
addition to all the other properties exhibited by BST.

• AVL tree checks the height of the left and the right sub-trees and assures that the difference is not more than 1.

• This difference is called the Balance Factor.

In the second tree, the left subtree of C has height 2 and
the right subtree has height 0, so the difference is 2.

In the third tree, the right subtree of A has height 2 and
the left is missing, so it is 0, and the difference is 2 again.

AVL tree permits difference (balance factor) to be only 1.

Balance-Factor = height(left-subtree) − height(right-subtree) 1. 2. 3.

AVL Tree (Height vs Balance)

Height (H):
• H(null) = -1 (no nodes)
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

H(Left Sub-tree) = 1
H(tree)=1+1 = 2

Balance (B):
• B(node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• If the difference in the height of left and right sub-trees is more
than 1, the tree is balanced using some rotation techniques.

AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1
• Maintain a threshold of 1 or less then 1
• This threshold is a parameterized, but standard is 1

1. 2. 3.

H(Right Sub-tree) = 1
H(tree)=1+1 = 2

AVL Tree (Balance)

20

4

3

1

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

H(Left Sub-Tree) = 1

H(Right Sub-Tree)=0

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

How are these computer ?

AVL Tree (Balance)

20

4

3

1

2. AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

B (Node 3) = 1
1. B (Node) = H(Left Sub-Tree) - H(Right Sub-Tree)

3. H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Apparently this tree is Left Heavy
• Left Heavy = Positive Balance = + ve value
• Right Heavy = Negative Balance = - ve value

B (Node 4) = -1-(-1) = 0

B (Node 1) = 0 - 0 = 0

B (Nodes 0, 2) = 0
B (Nodes 0) = -1 - (-1) = 0
B (Nodes 2) = -1 - (-1) = 0

H(Left Sub-Tree or Node 1) = 1

H(Right Sub-Tree or
Node 4)=0

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

B (Node 3) = 1 – 0

AVL Tree (Balance)

20

4

3

1

B (Node 4) = 3
• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• Not an AVL Tree
• We will use balancing to make it an AVL tree

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Rotations
• To balance itself, an AVL tree may perform the following four kinds of rotations:

1. Left rotation

2. Right rotation

3. Left-Right rotation

4. Right-Left rotation

• The first two rotations are single rotations and the next two rotations are double rotations.

1. Left Rotation:
If a tree becomes unbalanced, when a node is inserted into the right of the right subtree, then we perform a single left rotation

AVL Rotations

• To balance itself, an AVL tree may perform the following four kinds of rotations:

1. Left rotation

2. Right rotation

3. Left-Right rotation

4. Right-Left rotation

2. Right Rotation

• AVL tree may become unbalanced, if a node is inserted in the left of the left subtree. The tree then needs a
right rotation.

AVL Rotations
3. Left-Right Rotation: A left-right rotation is a combination of left rotation followed by right rotation.

a) A node has been inserted into the right of the left subtree. This makes C an unbalanced node. These
scenarios cause AVL tree to perform left-right rotation.

b) We first perform the left rotation on the left subtree of C. This makes A, the left subtree of B.

c) Node C is still unbalanced, however now, it is because of the left of the left-subtree.

d) We shall now right-rotate the tree, making B the new root node of this subtree. C now becomes
the right subtree of its own left subtree.

e) The tree is now balanced.

AVL Rotations
4. Right-Left Rotation: It is a combination of right rotation followed by left rotation.

a) A node has been inserted into the left subtree of the right subtree. This makes A, an unbalanced node
with balance factor 2.

b) First, we perform the right rotation along C node, making C the right subtree of its own left subtree
B. Now, B becomes the right subtree of A.

c) Node A is still unbalanced because of the right subtree of its right subtree and requires a left rotation.

d) A left rotation is performed by making B the new root node of the subtree. A becomes the left
subtree of its right subtree B.

e) The tree is now balanced.

AVL Rotations

• Left Heavy = Positive Balance = + ve value = right rotation
• Right Heavy = Negative Balance = - ve value = left rotation

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Rotations
• Left Heavy = Positive Balance = + ve value = right rotation
• Right Heavy = Negative Balance = - ve value = left rotation

AVL Rotations

1. Right Rotation on node Y 2. Left Rotation on node Z

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

B (X) = 1-1

B (Y) B (Z) = 0 - 0 = 0

B (T1, T2) = -1-(-1) = 0 B (T3, T4) = -1-(-1) = 0

H(Left Sub-Tree) = 1 H(Right Sub-Tree)=1

0 - 0 = 0

Height (H):
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

In this case we did not had any node values
In case of node values we need to maintain

BST property

AVL Tree
(Try to compute the balance by your self using formulas)

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Height (H):
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Is this Tree balanced?

AVL Rotations

• To balance itself, an AVL tree may perform the following four kinds of rotations:

• Right Heavy

• Left rotation

• Left-Right rotation

• Left Heavy

• Right rotation

• Right-Left rotation

Left Heavy = Positive Balance = + ve value
Right Heavy = Negative Balance = - ve value

AVL Tree (Balance)

01

4

3

2

B (Node 4) = 3
• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• Not an AVL Tree
• We will use balancing to make it an AVL tree

• Left Heavy = Positive Balance = + ve value

Left Heavy
• Right rotation
• Right-Left rotation

AVL Tree (Balance)

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• Not an AVL Tree
• We will use balancing to make it an AVL tree

• Left Heavy = Positive Balance = + ve value
• Left Heavy

• Right rotation
• Right-Left rotation

20

4

3

1

B (Node 3) = 1

B (Node 4) =

-1-(-1) = 0

B (Node 1) = 0 - 0 = 0

B (Nodes 0, 2) = 0

Height (H):
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Tree (Balance)

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• Not an AVL Tree
• We will use balancing to make it an AVL tree

• Left Heavy = Positive Balance = + ve value
• Left Heavy

• Right rotation
• Right-Left rotation

5

4

1

2

3

7

6

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Try to Balance this tree

• Right Heavy = Negative Balance = - ve value
• Right Heavy

• Left rotation
• Left-Right rotation

AVL Tree (Balance)

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

6

4

31

2

5 7

Balance (Node 4) = 1-1

Balance (Node 6)

Balance (Node 2)
1 - 1 = 0

Balance (Nodes 1, 3) = 0 Balance (Nodes 5, 7) = 0

H(Left Sub-Tree) = 1 H(Right Sub-Tree)=1

1 - 1 = 0

-1-(-1) = 0 -1-(-1) = 0

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• To Balance:
1. First left rotation on node 4
2. Then right rotations on nodes 2 & 6

