
Topics: AVL Trees and Segment Trees



AVL Tree (Balance)

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1
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B (node 4) = H(Left Sub-Tree) - H(Right Sub-Tree) => 1-1 = 0 

Balance (Node 6) : 1 - 1 = 0Balance (Node 2) = 1 - 1 = 0

Balance (Nodes 1, 3) = 0 
Balance (Nodes 5, 7) = 0 

H(Left Sub-Tree) = 1 H(Right Sub-Tree)=1 

B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)
-1-(-1) = 0

B (node) = H(Left Sub-Tree) - H(Right Sub-Tree) 
-1-(-1) = 0

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

H (node 2) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1
=> 0+1 = 1

H (node 6) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1
=> 0+1 = 1



SEASON IV: US Cyber Open
The US Cyber Games® Open is a Capture the Flag (CTF) competition that includes a Competitive 
CTF and Beginner's Game Room. (Link)

https://www.uscybergames.com/apply-to-play-season-4


AVL Tree (Insertion)



AVL Tree (Insertion)

After attaching node 9, update tree balance



AVL Tree (Insertion)
AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

After balance update



AVL Tree (Insertion)
AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1 • If the nodes are unbalanced, then rebalance the node.

• If B(node) > 1, it means the height of the left subtree is
greater than that of the right subtree.

• So, do a right rotation or left-right rotation
• If newNodeKey < leftChildKey do right rotation.

• Node 8 do not have a left node
• Else, do left-right rotation



AVL Tree (Insertion)

• If the nodes are unbalanced, then rebalance the node.
• If B(node) > 1, it means the height of the left subtree is greater than that of the right subtree.
• So, do a right rotation or left-right rotation

• If newNodeKey < leftChildKey do right rotation.
• Else, do left-right rotation

Balance not updated



AVL Tree (Insertion)

Balance not updated



AVL Tree
(Insertion)

After balance update



AVL Tree (Insertion)

Array = {10, 15, 20, 9, 5, 16, 17, 8, 6}



AVL Tree (Insertion)

Array = {10, 15, 20, 9, 5, 16, 17, 8, 6}



AVL Tree 
(Insertion)

Array = {10, 15, 20, 9, 5, 16, 17, 8, 6}



AVL Tree
(Insertion)

Array = {10, 15, 20, 9, 5, 16, 17, 8, 6}



AVL Tree (Deletion)

There are three cases for deleting a node:

Case 2
If nodeToBeDeleted has one child, then substitute the contents 
of nodeToBeDeleted with that of the child. Remove the child.

Case 3
If nodeToBeDeleted has two children, find the inorder

successor of nodeToBeDeleted (i.e. node with a minimum value of key in the 
right subtree).

Case 1
If nodeToBeDeleted is the leaf node (i.e. does not have any child), then 

remove nodeToBeDeleted.



AVL Tree (Deletion)

1. If nodeToBeDeleted has two children, find the inorder
successor of nodeToBeDeleted

(i.e. node with a minimum value of key in the right subtree).

In-order
1. Left Subtree, 
2. Root, 
3. Right Subtree



AVL Tree (Deletion)

1. If nodeToBeDeleted has two children, find the inorder
successor of nodeToBeDeleted (i.e. node with a minimum value of key in
the right subtree).

Need to update node balance



AVL Tree (Deletion)

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Height:
• H(null) = -1
• H(Single Node) = 0
• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

B (Node 9)   

0 - 0 = 0

B (Nodes 8 & 11) = 0 

• H(Left Sub-Tree) = 1 
• H(Right Sub-Tree) = -1 
• B(node) = 1-(-1)=2

-1-(-1) = 0



AVL Tree (Deletion)

Rebalance the tree if the balance factor of any of the nodes is not equal to -1, 0 or 1.
• If balanceFactor of currentNode > 1,
• If balanceFactor of leftChild >= 0, do right rotation
• Else do left-right rotation.

AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1



AVL Tree 
(Deletion - This slide will not be on canvas)

• If balanceFactor of currentNode < -1,
• If balanceFactor of rightChild <= 0, do left rotation.
• Else do right-left rotation.

Need to update node balance



AVL Tree

• Input = 10, 11, 12

Source

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html


AVL Tree

Pre-order
1. Root, 
2. Left Subtree,
3. Right Subtree



AVL Tree

Pre-order
1. Root, 
2. Left Subtree,
3. Right Subtree



AVL Tree

Pre-order
1. Root, 
2. Left Subtree,
3. Right Subtree

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• H(null) = -1
• H(Single Node) = 0



AVL Tree

Pre-order
1. Root, 
2. Left Subtree,
3. Right Subtree

• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• H(null) = -1
• H(Single Node) = 0



AVL Tree

Pre-order
1. Root, 
2. Left Subtree,
3. Right Subtree
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• AVL Tree = 𝐵(𝑛𝑜𝑑𝑒) ≤ 1

• B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

• H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

• H(null) = -1
• H(Single Node) = 0



AVL Tree (Application)

• Access large amounts of data quickly.

• Amount of information is proportional to size of tree and access time is
proportional to the height of the tree.

• From Discrete Math. for Engineering:

• When working with Fibonacci sequence AVL tress can optimize the
time to access data.

• AVL trees are particularly used for look up intensive applications i.e. used
for indexing large records in database to improve search

• AVL Trees are used for all sorts of in-memory collections such as sets and
dictionaries



Segment Tree

• A Segment Tree is a data structure that stores information about array intervals/segments as a tree.

• This allows answering range queries over an array efficiently, while still being flexible enough to allow quick modification of the
array.

A={1,3,5,7,9,11}

1 3 5 7 9 11

[0] [1] [2] [3] [4] [5]

1+3=

1+3+5=

• This includes finding the sum of consecutive array elements or finding the minimum element in a such a range in O(log n)  
time. 

• Between answering such queries, the Segment Tree allows modifying the array by replacing one element, or even changing
the elements of a whole subsegment (e.g. assigning all elements to any value, or adding a value to all element in the
subsegment).



A[0,..,4]10

Segment Tree

1 3 2 1 3A = 

• We want to compute sum of events over a range to time
• Each Array index represent 1 year
• Index [0] = Year 2000 and data/value represent events organized by students.

A[0]1 A[1]3 A[2]2 A[3]1 A[4]3

A[0,..,2]6

A[0, 1]4 A[3, 4]4

Events Each Year

Events First 2 Years Events Last 2 Years

Events First 3 Years

Total Events



Segment Tree

• We want to Find the Max value in this Array
• Issue: Array is not sorted
• We might need an iterative approach to search the Max value
• Try using Segment Tree

5 2 7 1 0 96 10



10

Segment Tree
(This slide will not be on canvas)

• We want to Find the Max value using Segment Tree
• Start by comparing neighbors

10 5 7 9

10 9

5 2 7 1 0 96 10

Level - 1

Level - 2

Level - 3



10

Segment Tree 
(Storing The Max Value Tree In Array) - (This slide will not be on canvas)

• We want to Find the Max value using Segment Tree
• Start from the last level of the tree and move toward the root

10 5 7 9

10 9

6 10 5 2 7 1 0 910 5 7 9

10 5 7 9



10

• We want to Find the Max value using Segment Tree
• Start from the last level of the tree and move toward the root

10 5 7 9

10 9

6 10 5 2 7 1 0 910 5 7 910 9

10 9

Segment Tree 
(Storing The Max Value Tree In Array) - (This slide will not be on canvas)



10

10 5 7 9

10 9

6 10 5 2 7 1 0 910 5 7 910 910

10

• We want to Find the Max value using Segment Tree
• Start from the last level of the tree and move toward the root

Segment Tree 
(Storing The Max Value Tree In Array) - (This slide will not be on canvas)



Segment Tree

• Since a Segment Tree is a binary tree, a simple linear array can be used to represent the Segment Tree.

• Before building the Segment Tree, one must figure what needs to be stored in the Segment Tree's node?

• For example, if the question is to find the sum of all the elements in an array from indices L to R, then at each
node (except leaf nodes) the sum of its children nodes is stored.

40

16 7 8 9

23 17

5 2 7 1 0 96 10

[0-1] [2-3] [4-5] [6-7]

[0] [1] [2] [3] [4] [5] [6] [7]

[0-3] [4-7]

[0-7]

23 17 16 7 8 9null 40

[0] [1] [2] [3] [4] [5] [6] [7]

[0-3] [4-7] [0-1] [2-3] [4-5] [6-7]null [0-7]

[0] [1] [2] [3] [4] [5] [6] [7]



Segment Tree

• The main idea behind segment trees is this:

1. Calculate the sum of the entire array and write it down somewhere;

2. Split the array into two halves, calculate the sum on both halves, and also write them down somewhere;

3. Split these halves into halves, calculate the total of four sums on them, and also write them down;

4. …And so on, until we recursively reach segments of length one.

• These computed subsegment sums can be logically represented as a binary tree.



Advantages of Segment tree

1. Efficient Range Queries

2. Dynamic Updates: Segment trees can efficiently handle updates to the elements of an array or sequence. Whether it's
modifying a single element or updating a range of values, segment trees can perform these updates in logarithmic time
complexity. This ability to handle dynamic updates makes them suitable for scenarios where the array elements change
frequently.

3. Versatility: This versatility allows segment trees to be applied in a wide range of problems, including computational
geometry, statistics, and data analysis.

4. Space Efficiency: This efficiency arises from the recursive nature of segment trees, where memory is shared among
overlapping segments.

5. Easy to Implement

6. Range Decomposition: Segment trees naturally decompose an array or sequence into smaller segments, allowing for
efficient recursive processing. This property makes them useful in divide-and-conquer algorithms, where problems are
divided into smaller subproblems, solved recursively, and then combined to obtain the final result.



Disadvantages of Segment tree

1. Space Complexity: Where memory usage is a concern. The space complexity of a segment tree is O(n), where n is the
number of elements in the input array.

2. Construction Time: Building a segment tree can take a significant amount of time, especially when the input array is large.
The construction process involves recursively dividing the array into smaller segments and performing operations to build
the tree. The time complexity of constructing a segment tree is O(n), where n is the number of elements in the input array.

3. Updates and Modifications: When an element in the input array changes, the corresponding segment tree needs to be
updated to reflect the modification, which can require traversing multiple tree nodes. The time complexity for updating an
element in a segment tree is O(log n), where n is the number of elements in the input array.

4. Static Structure: Segment trees are designed to work with static or semi-static arrays. If the input array frequently changes
its size or elements, rebuilding the segment tree from scratch can be inefficient.

5. Complex Implementation: Implementing a segment tree can be challenging compared to simpler data structures. The
recursive nature of segment trees and the need for efficient indexing can make the code more intricate and error-prone.
Understanding and implementing various operations, such as range queries and updates, require a good grasp of tree
algorithms



Segment Tree (Applications)

• The Segment Tree was used to efficiently list all pairs of intersecting rectangles from a list of rectangles in the 
plane.

• We can use this method to report the list of all rectilinear line segments in the plane which intersect a query 
line segment.

• We use this technique to report the perimeter of a set of rectangles in the plane.

Source: Wagner, David P.. “The Unified Segment Tree and its Application to the Rectangle Intersection Problem.” ArXiv abs/1302.6653 (2013)



Segment Tree (Applications)

• More recently, the segment tree has become popular for use in pattern recognition and image processing.

• We can also specify other applications that are very well known:

• Finding range sum/product, range max/min, prefix sum/product, etc

• Computational geometry

• Geographic information systems

• Static and Dynamic RMQ (Range Minimum Query)

• Storing segments in an arbitrary manner

Source: Multi-Species Individual Tree Segmentation and Identification Based on Improved Mask R-CNN and UAV Imagery in 
Mixed Forests (Link)

https://www.mdpi.com/2072-4292/14/4/874#metrics

