Homework Assignment 5 CS 2233 Section 001 and 002 Due: 11:59pm Friday, March 8

Problem 1. [20 points] Complete all participation activities in zyBook sections 4.5, 7.1-7.3

Problem 2. [10 points] Find $f \circ g$ and $g \circ f$ where $f, g: \mathbf{R} \to \mathbf{R}$ with f(x) = 3x + 4 and $g(x) = x^2$

 $(f \circ g)(x) = f(g(x)) = 3g(x) + 4 = 3x^2 + 4$

 $(g \circ f)(x) = g(f(x)) = (3x + 4)^2 = 9x^2 + 24x + 16$

Problem 3. [20 points]

Determine whether each of the following functions is $O(x^2)$. If a function is $O(x^2)$, then prove it by deriving witnesses c and n_0 . a. [5 points] 100x + 1000

1.	100 <i>x</i>	$\leq x^2$	when $x \ge 100$
2.	1000	$\leq x^2$	when $x \ge 100$
3.	100x + 1000	$\leq 2x^2$	when $x \ge 100$

100x + 1000 is $\mathcal{O}(x^2)$ with witnesses c = 2 and $n_0 = 100$

b. [5 points] $100x^2 + 1000$

1.	$100x^{2}$	$\leq 100x^2$	
2.	1000	$\leq x^2$	when $x \ge 100$
3.	$100x^2 + 1000$	$\leq 101x^2$	when $x \ge 100$

 $100x^2 + 1000$ is $\mathcal{O}(x^2)$ with witnesses c = 101 and $n_0 = 100$

```
c. [5 points]
\frac{x^3}{100} - 1000x^2 is not O(x^2)
```

d. [5 points] $x \cdot \log(x)$

1.	x	$\leq x$	
2.	$\log(x)$	$\leq x$	when $x \ge 1$
3.	$x \cdot \log(x)$	$\leq x^2$	when $x \ge 1$

 $x \cdot \log(x)$ is $\mathcal{O}(x^2)$ with witnesses c = 1 and $n_0 = 1$

Problem 4. [10 points]

a. [5 points] Use the definition of Big- Θ to show that $5n^5 + 4n^4 + 3n^3 + n$ is $\Theta(n^5)$

Let $n \ge 1$, then

1.	$5n^5$	$\leq 5n^5$	
2.	$4n^4$	$\leq 4n^5$	when $n \ge 1$
3.	$3n^3$	$\leq 3n^5$	when $n \ge 1$
4.	n	$\leq n^5$	when $n \ge 1$

5. $5n^5 + 4n^4 + 3n^3 + n \le 13n^5$ when $n \ge 1$

So $5n^5 + 4n^4 + 3n^3 + n$ is $\mathcal{O}(n^5)$ with witnesses c = 13 and $n_0 = 1$

In addition, when $n \ge 1$, $5n^5 + 4n^4 + 3n^3 + n \ge n^5$, so $5n^5 + 4n^4 + 3n^3 + n$ is $\Omega(n^5)$ with witnesses c = 1 and $n_0 = 1$

Hence $5n^5 + 4n^4 + 3n^3 + n$ is $\Theta(n^5)$

b. [5 points] Use the definition of Big- Θ to show that $2n^3 - n + 10$ is $\Theta(n^3)$

Let $n \ge 1$, then

1. $2n^3 \le 2n^3$ 2. $-n \le 0$ when $n \ge 0$ 3. $10 \le n^3$ when $n \ge 3$ 4. $2n^3 - n + 10 \le 3n^3$ when $n \ge 0$ and $n \ge 3$ 5. $2n^3 - n + 10 \le 3n^3$ when $n \ge 3$

So $2n^3 - n + 10$ is $\mathcal{O}(n^3)$ with witnesses c = 3 and $n_0 = 3$

In addition,

1.	$n^3 + 10$	$\geq n^3$	
2.	n^3	$\geq n$	when $n \ge 1$
3.	$2n^3 + 10$	$\geq n^3 + n$	when $n \geq 1$
4.	$2n^3 - n + 10$	$\geq n^3$	when $n \geq 1$

So $2n^3 - n + 10$ is $\Omega(n^3)$ with witnesses c = 1 and $n_0 = 1$ Thus $2n^3 - n + 10$ is $\Theta(n^3)$

Problem 5. [10 points] Prove each of the following by deriving witnesses c and n_0 . a. [5 points] If f(n) is $\mathcal{O}(g(n))$ and a > 0, then $a \cdot f(n)$ is $\mathcal{O}(g(n))$

- 1. Assume f(n) is $\mathcal{O}(g(n))$ and a > 0
- 2. $f(n) \le c_f \cdot g(n)$ when $n \ge n_f$ for some positive c_f and n_f
- 3. $a \cdot f(n) \le a \cdot c_f \cdot g(n)$ when $n \ge n_f$
- 4. $a \cdot f(n)$ is $\mathcal{O}(g(n))$ with witnesses positive $c = a \cdot c_f$ and $n_0 = n_f$
- 5. If f(n) is $\mathcal{O}(g(n))$ and a > 0, then $a \cdot f(n)$ is $\mathcal{O}(g(n))$

b. [5 points] If f(n) is $\Omega(g(n))$ and g(n) is $\Omega(h(n))$, then f(n) is $\Omega(h(n))$

- 1. Assume f(n) is $\Omega(g(n))$ and g(n) is $\Omega(h(n))$
- 2. $f(n) \ge c_f \cdot g(n)$ when $n \ge n_f$ for some positive c_f and n_f
- 3. $g(n) \ge c_g \cdot h(n)$ when $n \ge n_g$ for some positive c_g and n_g
- 4. $f(n) \ge c_f \cdot c_g \cdot h(n)$ when $n \ge n_f$ and $n \ge n_g$
- 5. $f(n) \ge c_f \cdot c_g \cdot h(n)$ when $n \ge \max(n_f, n_g)$
- 6. f(n) is $\Omega(h(n))$ with witnesses $c = c_f \cdot c_g$ and $n_0 = \max(n_f, n_g)$
- 7. If f(n) is $\Omega(g(n))$ and g(n) is $\Omega(h(n))$, then f(n) is $\Omega(h(n))$