Chapter 1 Logic

1

Logic

- A logic consists of:
 - A language for describing aspects of some worlds (syntax)
 - Rules for determining the meaning of sentences in the language (semantics)
 - Rules for deriving true sentences from other true sentences
- Logic is useful because:
 - It has no ambiguity
 - It can be used to find new true statements

Logic in Programming

- You have already been exposed to logic in programming
 - ((x >= 1) && (x <= 10))
 - But no rules for deriving true sentences

Propositional Logic

- A proposition is a statement that is either true or false
- Examples
 - San Antonio is a city in Texas
 - 1 + 1 = 3
- Commands and questions are not propositions
- Noun phrases such as: "The store where I bought a pen yesterday" are not propositions
- Propositional formulas are built from atomic propositions and logical operators

Atomic Propositions

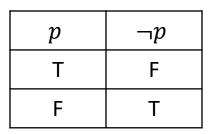
- Atomic propositions are the simplest type of proposition and are represented by propositional variables (usually named *p*, *q*, *r*, *s*, ...)
- A propositional variable can have one of two values: true (represented by T) or false (represented by F) indicating the truth or falsity of the propositions that it represents

Compound Propositions

- A compound proposition is created by using a logical operator (connective) and one or two other propositions
- The meaning of each operator can be described by a truth table

Compound Propositions - Negation

- ¬p
- Truth table:



• "It is not the case that p", "not p"

Compound Propositions - Negation

- Assume p represents "Vandana's smartphone has at least 32 GB of memory"
- Then $\neg p$ represents
 - "It is not the case that Vandana's smartphone has at least 32 GB of memory"
 - or "Vandana's smartphone has less than 32 GB of memory"

Compound Propositions - Conjunction

- $p \land q$
- Truth table:

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

• "p and q"

Compound Propositions - Conjunction

- Assume p represents "Rebecca's PC has more than 16 GB free hard disk space"
- and q represents "The processor in Rebecca's PC runs faster than 1 GHz."
- Then $p \land q$ represents
 - "Rebecca's PC has more than 16 GB free hard disk space, and the processor in Rebecca's PC runs faster than 1 GHz."

Compound Propositions - Conjunction

- We use "but" and "even though" and other phrases as a conjunction often to indicate a contrast
 - I walked 30 miles, but my feet are not sore
 - My feet are not sore even though I walked 30 miles
 - I walked 30 miles, and despite that, my feet are not sore

Compound Propositions - Disjunction

- $p \lor q$
- Truth table:

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

• "*p* or *q*"

Compound Propositions - Disjunction

- Example
- Assume p represents "The dog is sleeping"
- and q represents "The cat is sleeping"
- Then $p \lor q$ represents
 - "The dog is sleeping or the cat is sleeping"

Compound Propositions - Disjunction

• Be careful when translating from English to propositional logic

"You may have cake for dessert or you may have pie for dessert"

- Let p represent "You may have cake for dessert"
- Let q represent "You may have pie for dessert"
- This might be translated as $p \lor q$
- But it might better be translated as $(p \lor q) \land \neg (p \land q)$

Compound Propositions – Exclusive Or

- $\bullet \ p \oplus q$
- Truth table:

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

• "p or q but not both", "p x-or q"

Compound Propositions – Exclusive Or

- Assume *p* represents "The fastest runner is Sandy"
- and q represents "The fastest runner is Chris"
- Then $p \oplus q$ represents
 - "The fastest runner is Sandy, or the fastest runner is Chris, but not both"

- We can determine the truth of any compound proposition in a truth table that uses the variables in the proposition
- The rows of the table correspond to possible combinations of truth values (true and false) for the variables.
 - If the proposition has one variable, then the table has 2 rows
 - If the proposition has two variables, then the table has 4 rows
 - If the proposition has n variables, then the table has 2^n rows
- There is a column for each sub-proposition and for the entire proposition (one column for each variable and operator)

- Example: $(p \land \neg q) \lor q$
- Create a table with 4 rows and with columns for the proposition and all sub-propositions

p	q	$\neg q$	$(p \land \neg q)$	$(p \land \neg q) \lor q$

- Example: $(p \land \neg q) \lor q$
- Fill out the *p* and *q* columns with all possible combinations of truth values

p	q	$\neg q$	$(p \land \neg q)$	$(p \land \neg q) \lor q$
Т	Т			
Т	F			
F	Т			
F	F			

- Example: $(p \land \neg q) \lor q$
- Complete the $\neg q$ column using the q column

p	q	$\neg q$	$(p \land \neg q)$	$(p \wedge \neg q) \vee q$
Т	Т	F		
Т	F	Т		
F	Т	F		
F	F	Т		

- Example: $(p \land \neg q) \lor q$
- Complete the $(p \land \neg q)$ column using the p and $\neg q$ columns

p	q	$\neg q$	$(p \land \neg q)$	$(p \land \neg q) \lor q$
Т	Т	F	F	
Т	F	Т	Т	
F	Т	F	F	
F	F	Т	F	

- Example: $(p \land \neg q) \lor q$
- Complete the $(p \land \neg q) \lor q$ column using the $(p \land \neg q)$ and q columns

p	q	$\neg q$	$(p \land \neg q)$	$(p \land \neg q) \lor q$
Т	Т	F	F	Т
Т	F	Т	Т	Т
F	Т	F	F	Т
F	F	Т	F	F

- Let p represent "Chris went to the store"
- Let q represent "Sandy went to the store"
- Translate the following into propositional logic:
 - 1. It is not the case that both Chris went to the store and Sandy went to the store
 - 2. Chris did not go to the store and Sandy did not go to the store
- Do the two statements have the same meaning?

- Let p represent "Chris went to the store"
- Let q represent "Sandy went to the store"
 - 1. It is not the case that both Chris went to the store and Sandy went to the store:

 $\neg(p \land q)$

2. Chris did not go to the store and Sandy did not go to the store:

 $(\neg p) \land (\neg q)$

p	q	$p \wedge q$	$\neg(p \land q)$

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$

p	q	$p \wedge q$	$\neg(p \land q)$
Т	Т		
Т	F		
F	Т		
F	F		

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$

p	q	$p \land q$	$\neg(p \land q)$
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$

p	q	$p \land q$	$\neg(p \land q)$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$

p	q	$p \land q$	$\neg(p \land q)$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$
Т	Т			
Т	F			
F	Т			
F	F			

p	q	$p \land q$	$\neg(p \land q)$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$
Т	Т	F	F	
Т	F	F	Т	
F	Т	Т	F	
F	F	Т	Т	

p	q	$p \wedge q$	$\neg(p \land q)$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$
Т	Т	F	F	F
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

p	q	$p \wedge q$	$\neg(p \land q)$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

p	q	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$
Т	Т	F	F	F
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

 $\neg(p \land q)$ and $(\neg p) \land (\neg q)$ do not have the same meaning