Important Logical Equivalences

Logical Equivalence	Name
$p \land \mathbf{T} \equiv p$ $p \lor \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg \neg p \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Complement laws
$p \to q \equiv \neg p \lor q$ $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	Conditional identities

- T stands for any tautology such as $p \lor \neg p$
- **F** stands for any contradiction such as $p \land \neg p$
- These equivalences can be used as templates. We can substitute a proposition for all occurrences of a variable. E.g.: (substitute (q → r) for p in the Identity law)

$$(q \to r) \land T \equiv (q \to r)$$

Working with Logical Equivalences

- Note that if A, B, and C are any propositions then:
 - $A \equiv B$ if and only if $B \equiv A$
 - If $A \equiv B$ and $B \equiv C$, then $A \equiv C$
 - If *A* ≡ *B* then *A* and *B* can be substituted for each other in other propositions
- We can use the above properties to derive new logical equivalences from existing ones (in a manner similar to algebra)

Deriving New Logical Equivalences

We can write derivations vertically and include the names of the equivalences that we are using (Example: $p \rightarrow q \equiv \neg q \rightarrow \neg p$)

$p \rightarrow q$	$\equiv \neg p \lor q$	Conditional Identity
	$\equiv q \vee \neg p$	Commutative law
	$\equiv \neg \neg q \lor \neg p$	Double Negation law
	$\equiv \neg q \rightarrow \neg p$	Conditional Identity

Deriving New Logical Equivalences

Another example: $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

$(p \to r) \lor (q \to r)$	$\equiv (\neg p \lor r) \lor (q \to r)$	Conditional Identity
	$\equiv (\neg p \lor r) \lor (\neg q \lor r)$	Conditional Identity
	$\equiv \neg p \lor (r \lor (\neg q \lor r))$	Associative law
	$\equiv \neg p \lor \left((\neg q \lor r) \lor r \right)$	Commutative law
	$\equiv \neg p \lor (\neg q \lor (r \lor r))$	Associative law
	$\equiv (\neg p \lor \neg q) \lor (r \lor r)$	Associative law
	$\equiv (\neg p \lor \neg q) \lor r$	Idempotent law
	$\equiv \neg (p \land q) \lor r$	De Morgan's law
	$\equiv (p \land q) \to r$	Conditional Identity

Note how we get rid of implications in order to work with disjunctions

Deriving New Logical Equivalences

Yet another example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology. I.e., $(p \land q) \rightarrow (p \lor q) \equiv T$

 $(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q)$ **Conditional Identity** $\equiv (\neg p \lor \neg q) \lor (p \lor q)$ De Morgan $\equiv \neg p \lor (\neg q \lor (p \lor q))$ Associative law $\equiv \neg p \lor (\neg q \lor (q \lor p))$ Commutative law $\equiv \neg p \lor ((\neg q \lor q) \lor p)$ Associative law $\equiv \neg p \lor (p \lor (\neg q \lor q))$ Commutative law $\equiv (\neg p \lor p) \lor (\neg q \lor q)$ Associative law $\equiv (\neg p \lor p) \lor (q \lor \neg q)$ Commutative law $\equiv (\neg p \lor p) \lor T$ Complement law $\equiv T$ **Domination law**

Note how we get rid of implications in order to work with disjunctions

Limitations of Propositional Logic

- Propositional logic is limited in how we can reason about statements
- For example:
 - Let p represent "Socrates is human"
 - Let q represent "All humans are mortal"
 - Let r represent "Socrates is mortal"
 - We cannot show that $p \land q \rightarrow r \equiv T$ using propositional logic

Predicates

• The statement "Socrates is human" is a statement about Socrates, but it can be generalized to be applied to anyone:

is human

• We can do the same for "Socrates is mortal":

_ is mortal

• Such generalizations are called <u>predicates</u>

Predicates

- Predicates can be about more than one thing.
- For example, from "Smith is taller than Jones"

is taller than ____

• It is also possible to have predicates such as

____ is taller than Jones

Smith is taller than _

Predicate Logic

- Predicate logic uses capital letters (P, Q, R, ...) to represent predicates
- For example: Let *H* and *M* represent the predicates for being human and being mortal.
- If s stands for Socrates, then the meanings of H(s) and M(s) are:
 - "Socrates is human"
 - "Socrates is mortal"

Reintroducing the Logical Connectives

 The logical connectives from propositional logic: negation, conjunction, disjunction, implication and bi-implication are used in predicate logic also.

- Examples
 - $\neg P(x)$
 - $Q(x, y) \rightarrow P(x) \lor R(y)$

Variables and the Domain of Discourse

- In predicate logic, a <u>domain of discourse</u> (or <u>universe of discourse</u>) is the set of objects to which predicates may refer
- Predicates may take <u>variables</u> that have as values objects from the universe of discourse

Common Predicates

- In predicate logic, we often want to talk about two things being equal.
- We could explicitly state that a predicate P is the equality relation, i.e. P(x, y) is true exactly when x = y.
- Instead, for convenience, we can use x = y as a predicate.
- When the universe of discourse is numbers we can also use:
 - $x < y, x > y, x \le y$, and $x \ge y$
 - the constants 0, 1, 2, ... and the arithmetic operators +, -, etc.

Variables and the Universe of Discourse

- Example: Let *S* be a two-argument predicate symbol with the following meaning:
 - S(x, y): x is smaller than y
- If the universe of discourse is the set of dogs at a dog park, then S(x, y) represents the statement that dog x is smaller than dog y

- Let the universe of discourse be a set of dogs at a dog park, S(x, y) represent the statement x is smaller than y, and B(x) represent the statement that x is a beagle
- Translate the following into predicate logic:
 - x is smaller than both y and z
 - y and z are the same size
 - If z is a beagle, then w is bigger than z

- *x* is smaller than both *y* and *z*
- $S(x, y) \wedge S(x, z)$

- y and z are the same size
- $\neg S(y,z) \land \neg S(z,y)$

- If z is a beagle, then w is bigger than z
- $B(z) \rightarrow S(z, w)$

Meaning

- To determine if S(x, y) is true or false, we need to know which dogs x and y stand for.
- An <u>environment</u>, η , is a function that takes a variable and returns an object from the domain of discourse.

Meaning

- Given an environment, η, S(x, y) is true exactly when the dog η(x) is smaller than the dog η(y)
- The notation $[S(x, y)]_{\eta}$ stands for the truth value of S(x, y) given η

Logical Connectives and Environments

- The meaning of the connectives is the same as in propositional logic, but is expressed in terms of an environment function, η
- For example:

 $\llbracket P(x) \land Q(y) \rrbracket_{\eta}$ is true exactly when $\llbracket P(x) \rrbracket_{\eta}$ and $\llbracket Q(y) \rrbracket_{\eta}$ are true

 $\llbracket P(x) \lor Q(y) \rrbracket_{\eta}$ is true exactly when $\llbracket P(x) \rrbracket_{\eta}$ or $\llbracket Q(y) \rrbracket_{\eta}$ is true

 $\llbracket P(x) \to Q(y) \rrbracket_{\eta}$ is true if $\llbracket P(x) \rrbracket_{\eta}$ being true implies $\llbracket Q(y) \rrbracket_{\eta}$ is true

- Let η be an environment function where:
 - $\eta(x) = 0$
 - $\eta(y) = 1$
 - $\eta(z) = 2$
- Then: $[[y = x + y]]_{\eta} \text{ is true}$
 - $\llbracket x > y \lor x > z \rrbracket_{\eta}$ is false
 - $\llbracket \neg (x = 0 \rightarrow y = z) \rrbracket_{\eta}$ is true

Updating Environments

- An environment function η can be updated by altering its behavior on an input variable.
- Let *D* be the domain of discourse and also let *d* be a member of *D*
- $\eta_{x=d}$ is an environment that behaves exactly like η with the possible exception that $\eta_{x=d}(x) = d$

$$\eta_{x=d}(y) = \begin{cases} d & \text{if } y \text{ is } x \\ \eta(y) & \text{if } y \text{ is not } x \end{cases}$$

Updating Environments Example

- Assume the integers as a domain of discourse and the environment function η where:
 - $\eta(x) = 0$ • $\eta(y) = 1$ • $\eta(z) = 2$
- Then:
 - $\eta_{z=9}(x) = 0$ • $\eta_{z=9}(y) = 1$
 - $\eta_{z=9}(z) = 9$

The Existential Quantifier

- Assume that the domain of discourse is the set of all dogs and that the predicate S(x, y) is true exactly when x is smaller than y.
- How can we express that x is not the smallest dog?
- We would like to say that there exists a dog z such that S(z, x)

The Existential Quantifier

- To do this, predicate logic has an existential quantifier: $\exists Z S(z, x)$
- We read this as "There exists a z such that S(z, x)"

• $[\exists z S(z, x)]_{\eta}$ is true exactly when there is a d in the universe of discourse such that $[S(z, x)]_{\eta_{z=d}}$ is true

- Translate the following into predicate logic:
 - x is not the biggest dog
 - x is the smallest dog
 - There is a beagle that is smaller than x
 - x is a beagle and there is another beagle that is the same size as x

• x is not the biggest dog

• $\exists z S(x,z)$

• *x* is the smallest dog

• $\neg \exists z S(z, x)$

• There is a beagle that is smaller than x

• $\exists y(B(y) \land S(y,x))$

- z is a beagle and there is another beagle that is the same size as z
- $B(z) \land \exists w (B(w) \land \neg (z = w) \land \neg S(z, w) \land \neg S(w, z))$

The Universal Quantifier

• Recall that we can express that x is the smallest dog in predicate logic as:

 $\neg \exists z \, S(z, x)$

"It is not the case that there is a dog that is smaller than x"

• This could also be stated as:

"For any dog, z, z is not smaller than x "

The Universal Quantifier

• The statement

"For any dog, z, z is not smaller than x "

can be expressed as:

$$\forall z \neg S(z, x)$$

 $[\![\forall z \neg S(z, x)]\!]_{\eta}$ is true exactly when for each d in the universe of discourse $[\![\neg S(z, x)]\!]_{\eta_{z=d}}$ is true

- Translate the following into predicate logic:
 - All dogs are beagles
 - x is smaller than any beagle
 - x is a beagle and is smaller than all other beagles

• All dogs are beagles

• $\forall x B(x)$

• x is smaller than any beagle

• $\forall y (B(y) \rightarrow S(x, y))$

• x is a beagle and is smaller than all other beagles

•
$$B(x) \land \forall z \left((B(z) \land \neg (x = z)) \to S(x, z) \right)$$

- Let the domain of discourse be the set of all people.
- Let P(x, y) represent: x is the parent of y
- Let L(x, y) represent: x loves y
- Translate the following to predicate logic:
 - u is a grandparent of v
 - x loves all of his/her children
 - y and z are siblings

• u is a grandparent of v

• $\exists z (P(u,z) \land P(z,v))$

• *x* loves all of his/her children

• $\forall u (P(x,u) \rightarrow L(x,u))$

• y and z are siblings

•
$$\exists w(P(w, y) \land P(w, z)) \land \neg(y = z)$$