Section 13.2 Graph Representations

Representing Graphs

- Programs that work with graphs need a way to represent them
- Depending on the goal of the program, different representations can be used
- Sets of edges can be represented in different ways
- For each vertex v in a graph, an <u>adjacency list</u> is a list of vertices that are adjacent to v in the graph

Adjacency Lists

• Example: Give the adjacency lists for each vertex in the following undirected graph

TABLE 1 An Adjacency Listfor a Simple Graph.		
Vertex	Adjacent Vertices	
а	b, c, e	
b	а	
С	a, d, e	
d	с, е	
е	a, c, d	

Adjacency Lists

• Example: Give the adjacency lists for each vertex in the following directed graph

FIGURE 2 A directed graph.

TABLE 2An Adjacency List for aDirected Graph.	
Initial Vertex	Terminal Vertices
а	b, c, d, e
b	b, d
с	а, с, е
d	
е	b, c, d

- The edges of a graph can also be represented by an <u>adjacency matrix</u>
- An adjacency matrix is a table containing 1s and 0s that describes the edges in a graph
- The value at row *i* and column *j* is a 1 if there is an edge connecting vertex *i* and vertex *j*
- The value at row *i* and column *j* is a 0 if there is no edge connecting vertex *i* and vertex *j*

• Example: Give the adjacency matrix for the following undirected graph.

Adjacency matrices for undirected graphs are symmetric: The entry at row i and column j is the same as the entry at row j and column i

• Example 4: Draw an undirected graph from the following adjacency matrix

• Example : Draw an undirected graph from the following adjacency matrix

• Example: Give the adjacency matrix for the following directed graph

• Example: Draw a directed graph from the following adjacency matrix

 $\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$

• Example: Draw a directed graph from the following adjacency matrix

Terminal vertices

Initial vertices

$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$

• Example: Draw a directed graph from the following adjacency matrix

• Example: Draw a directed graph from the following adjacency matrix

