Section 2.4 Writing Direct Proofs

1

- To prove an implication $P(x) \to Q(x)$, we assume $P(x)$ and from it derive $Q(x)$
- Note that implications often occur as part of a universal statement
	- "If x is an odd integer then x^2 is an odd integer" by itself has a hidden quantifier
	- "For all x, if x is an odd integer then x^2 is an odd integer"
	- We must prove this statement for an arbitrary x for which we make no assumptions other than those in the statement (x is an odd integer)

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer
		- 2. $x = 2k + 1$ for some integer k

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer
		- 2. $x = 2k + 1$ for some integer k

7. x^2 is an odd integer

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer
		- 2. $x = 2k + 1$ for some integer k

\n- 6.
$$
x^2 = 2j + 1
$$
 for some integer j
\n- 7. x^2 is an odd integer
\n

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer

2.
$$
x = 2k + 1
$$
 for some integer k

3.
$$
x^2 = (2k + 1)(2k + 1)
$$

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer

2.
$$
x = 2k + 1
$$
 for some integer k

3.
$$
x^2 = (2k + 1)(2k + 1)
$$

4.
$$
x^2 = 4k^2 + 4k + 1
$$

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer

2.
$$
x = 2k + 1
$$
 for some integer k

3.
$$
x^2 = (2k+1)(2k+1)
$$

$$
4. \quad x^2 = 4k^2 + 4k + 1
$$

5.
$$
x^2 = 2(2k^2 + 2k) + 1
$$
 where $2k^2 + 2k$ is an integer

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer

2.
$$
x = 2k + 1
$$
 for some integer k

3.
$$
x^2 = (2k+1)(2k+1)
$$

$$
4. \quad x^2 = 4k^2 + 4k + 1
$$

5.
$$
x^2 = 2(2k^2 + 2k) + 1
$$
 where $2k^2 + 2k$ is an integer

6. $x^2 = 2j + 1$ where $j = 2k^2 + 2k$ is an integer

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer

2.
$$
x = 2k + 1
$$
 for some integer k

$$
3. \quad x^2 = (2k+1)(2k+1)
$$

$$
4. \quad x^2 = 4k^2 + 4k + 1
$$

5.
$$
x^2 = 2(2k^2 + 2k) + 1
$$
 where $2k^2 + 2k$ is an integer

- 6. $x^2 = 2j + 1$ where $j = 2k^2 + 2k$ is an integer
- 7. x^2 is an odd integer

- Example: If x is an odd integer then x^2 is an odd integer
	- Proof:
		- 1. Assume x is an odd integer

2.
$$
x = 2k + 1
$$
 for some integer k

$$
3. \quad x^2 = (2k+1)(2k+1)
$$

$$
4. \quad x^2 = 4k^2 + 4k + 1
$$

5.
$$
x^2 = 2(2k^2 + 2k) + 1
$$
 where $2k^2 + 2k$ is an integer

- 6. $x^2 = 2j + 1$ where $j = 2k^2 + 2k$ is an integer
- 7. x^2 is an odd integer
- 8. If x is an odd integer then x^2 is an odd integer

• Watch the video on direct proofs in section 2.4

• A number r is rational if there are integers x and y such that:

•
$$
y \neq 0
$$
 and
\n• $r = \frac{x}{y}$

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \neq 0$, and $d \neq 0$

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \neq 0$, and $d \neq 0$

8. $r + s$ is a rational number

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \neq 0$, and $d \neq 0$

\n- 7.
$$
r + s = \frac{x}{y}
$$
 where *x* is an integer, *y* is an integer, and $y \neq 0$
\n- 8. $r + s$ is a rational number
\n

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \neq 0$, and $d \neq 0$

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

\n- 2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \neq 0$, and $d \neq 0$
\n- 3. $r + s = \frac{a}{b} + \frac{c}{d}$
\n

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \ne 0$, and $d \ne 0$
\n3. $r + s = \frac{a}{b} + \frac{c}{d}$
\n4. $r + s = \frac{d}{d} (\frac{a}{b}) + \frac{b}{b} (\frac{c}{d})$

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \ne 0$, and $d \ne 0$
\n3. $r + s = \frac{a}{b} + \frac{c}{d}$
\n4. $r + s = \frac{d}{d}(\frac{a}{b}) + \frac{b}{b}(\frac{c}{d})$
\n5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \ne 0$, and $d \ne 0$
\n3. $r + s = \frac{a}{b} + \frac{c}{d}$
\n4. $r + s = \frac{d}{d}(\frac{a}{b}) + \frac{b}{b}(\frac{c}{d})$
\n5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$
\n6. $r + s = \frac{ad + bc}{bd}$

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers

2.
$$
r = \frac{a}{b}
$$
 and $s = \frac{c}{d}$ where *a*, *b*, *c*, and *d* are integers, $b \ne 0$, and $d \ne 0$
\n3. $r + s = \frac{a}{b} + \frac{c}{d}$
\n4. $r + s = \frac{d}{d}(\frac{a}{b}) + \frac{b}{b}(\frac{c}{d})$
\n5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$
\n6. $r + s = \frac{ad + bc}{bd}$
\n7. $r + s = \frac{x}{y}$ where $x = ad + bc$ is an integer, $y = bd$ is an integer, and $bd \ne 0$

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers
	- 2. $r = \frac{a}{b}$ $\frac{a}{b}$ and $s = \frac{c}{d}$ $\frac{c}{d}$ where a, b, c, and d are integers, $b \neq 0$, and $d \neq 0$ 3. $r + s = \frac{a}{b}$ \boldsymbol{b} $+\frac{c}{d}$ \boldsymbol{d} 4. $r + s = \frac{d}{d}$ \boldsymbol{d} \overline{a} \boldsymbol{b} $+\frac{b}{b}$ \boldsymbol{b} \mathcal{C}_{0} \boldsymbol{d} 5. $r + s = \frac{ad}{bd}$ bd $+\frac{bc}{bd}$ bd 6. $r + s = \frac{ad + bc}{bd}$ bd 7. $r + s = \frac{x}{x}$ $\frac{x}{y}$ where $x = ad + bc$ is an integer, $y = bd$ is an integer, and $bd \neq 0$ 8. $r + s$ is a rational number

- Example if r and s are rational numbers, then $r + s$ is a rational number Proof:
	- 1. Assume r and s are rational numbers
	- 2. $r = \frac{a}{b}$ $\frac{a}{b}$ and $s = \frac{c}{d}$ $\frac{c}{d}$ where a, b, c, and d are integers, $b \neq 0$, and $d \neq 0$ 3. $r + s = \frac{a}{b}$ \boldsymbol{b} $+\frac{c}{d}$ \boldsymbol{d} 4. $r + s = \frac{d}{d}$ \boldsymbol{d} \overline{a} \boldsymbol{b} $+\frac{b}{b}$ \boldsymbol{b} \mathcal{C}_{0} \boldsymbol{d} 5. $r + s = \frac{ad}{bd}$ bd $+\frac{bc}{bd}$ bd 6. $r + s = \frac{ad + bc}{bd}$ bd 7. $r + s = \frac{x}{x}$ $\frac{x}{y}$ where $x = ad + bc$ is an integer, $y = bd$ is an integer, and $bd \neq 0$
	- 8. $r + s$ is a rational number
	- 9. If r and s are rational numbers, then $r + s$ is a rational number

• Example if a , b , and c are integers, then if a divides b and b divides c , then α divides α

Proof:

1. Assume a, b , and c are integers

• Example if a , b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume α divides β and β divides α

• Example if a , b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume α divides β and β divides α
- 3. $b = ai$ for some integer i

• Example if a , b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume α divides β and β divides α
- 3. $b = ai$ for some integer i
- 4. $c = bj$ for some integer j

• Example if a, b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume α divides β and β divides α
- 3. $b = ai$ for some integer i
- 4. $c = bj$ for some integer j
- 5. $c = aij$ where ij is an integer

• Example if a, b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume α divides β and β divides α
- 3. $b = ai$ for some integer i
- 4. $c = bj$ for some integer j
- 5. $c = aij$ where ij is an integer
- 6. $c = ak$ where k is an integer

• Example if a, b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume α divides β and β divides α
- 3. $b = ai$ for some integer i
- 4. $c = bj$ for some integer j
- 5. $c = aij$ where ij is an integer
- 6. $c = ak$ where k is an integer
- 7. α divides α

• Example if a, b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume α divides β and β divides α
- 3. $b = ai$ for some integer i
- 4. $c = bj$ for some integer j
- 5. $c = aij$ where ij is an integer
- 6. $c = ak$ where k is an integer
- 7. α divides α
- 8. If a divides b and b divides c then a divides c

• Example if a, b , and c are integers, then if a divides b and b divides c , then α divides α

- 1. Assume a, b , and c are integers
- 2. Assume a divides b and b divides c
- 3. $b = ai$ for some integer i
- 4. $c = bj$ for some integer j
- 5. $c = aij$ where ij is an integer
- 6. $c = ak$ where k is an integer
- 7. α divides α
- 8. If a divides b and b divides c then a divides c
- 9. if a, b, and c are integers, then if a divides b and b divides c, then a divides c

Section 2.5 Proofs by Contrapositive

- If it is difficult to prove $p \rightarrow q$ by a direct proof, we can instead prove $p \rightarrow q$ by a proof by contrapositive
- Since $p \to q \equiv \neg q \to \neg p$, we can prove $p \to q$ by proving $\neg q \to \neg p$ by using a direct proof

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n+2$ is not odd
	- 1. Assume that n is an integer and n is not odd

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n+2$ is not odd
	- 1. Assume that n is an integer and n is not odd
	- 2. n is even

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n+2$ is not odd
	- 1. Assume that n is an integer and n is not odd
	- 2. n is even
	- 3. $n = 2k$ for some integer k

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n+2$ is not odd
	- 1. Assume that n is an integer and n is not odd
	- 2. n is even
	- 3. $n = 2k$ for some integer k
	- 4. $3n + 2 = 6k + 2$

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n+2$ is not odd
	- 1. Assume that n is an integer and n is not odd
	- 2. n is even
	- 3. $n = 2k$ for some integer k
	- 4. $3n + 2 = 6k + 2$
	- 5. $3n + 2 = 2(3k + 1)$ where $(3k + 1)$ is an integer because k is an integer

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n+2$ is not odd
	- 1. Assume that n is an integer and n is not odd
	- 2. n is even
	- 3. $n = 2k$ for some integer k
	- 4. $3n + 2 = 6k + 2$
	- 5. $3n + 2 = 2(3k + 1)$ where $(3k + 1)$ is an integer because k is an integer
	- 6. $3n + 2$ is even

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n + 2$ is not odd
	- 1. Assume that n is an integer and n is not odd
	- 2. n is even
	- 3. $n = 2k$ for some integer k
	- 4. $3n + 2 = 6k + 2$
	- 5. $3n + 2 = 2(3k + 1)$ where $(3k + 1)$ is an integer because k is an integer
	- 6. $3n + 2$ is even
	- 7. $3n + 2$ is not odd

- Example: Prove that if n is an integer and $3n + 2$ is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then $3n + 2$ is not odd
	- 1. Assume that n is an integer and n is not odd
	- 2. n is even
	- 3. $n = 2k$ for some integer k
	- 4. $3n + 2 = 6k + 2$
	- 5. $3n + 2 = 2(3k + 1)$ where $(3k + 1)$ is an integer because k is an integer
	- 6. $3n + 2$ is even
	- 7. $3n + 2$ is not odd
	- 8. if *n* is an integer and $3n + 2$ is odd, then *n* is odd

- Another Example: Prove that if $n = ab$ where a and b are positive integers, then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- Rephrase: If a and b are positive integers then if $n = ab$ then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- Replace inner implication with its contrapositive:

• Proof of

If a and b are positive integers, then if it is not the case that $a \leq \sqrt{n}$ or $b \leq$ \sqrt{n} then it is not the case that $n = ab$

1. Assume a and b are positive integers

• Proof of

- 1. Assume a and b are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$

• Proof of

- 1. Assume a and b are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$

• Proof of

- 1. Assume a and b are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$

• Proof of

- 1. Assume a and b are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. $ab > n$

• Proof of

- 1. Assume a and b are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. $ab > n$
- 6. It is not the case that $n = ab$

• Proof of

- 1. Assume α and \dot{b} are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. $ab > n$
- 6. It is not the case that $n = ab$
- 7. If it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$ then it is not the case that $n =$ ab

• Proof of

- 1. Assume a and b are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. $ab > n$
- 6. It is not the case that $n = ab$
- 7. If it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$ then it is not the case that $n =$ ab
- 8. If a and b are positive integers, then if it is not the case that $a \leq \sqrt{n}$ or $b \leq$ \sqrt{n} then it is not the case that $n = ab$