Section 2.4 Writing Direct Proofs

- To prove an implication $P(x) \rightarrow Q(x)$, we assume P(x) and from it derive Q(x)
- Note that implications often occur as part of a universal statement
 - "If x is an odd integer then x^2 is an odd integer" by itself has a hidden quantifier
 - "For all x, if x is an odd integer then x^2 is an odd integer"
 - We must prove this statement for an arbitrary x for which we make no assumptions other than those in the statement (x is an odd integer)

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer
 - 2. x = 2k + 1 for some integer k

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer
 - 2. x = 2k + 1 for some integer k

7. x^2 is an odd integer

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer
 - 2. x = 2k + 1 for some integer k

6.
$$x^2 = 2j + 1$$
 for some integer *j*
7. x^2 is an odd integer

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer

2.
$$x = 2k + 1$$
 for some integer k

3.
$$x^2 = (2k+1)(2k+1)$$

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer

2.
$$x = 2k + 1$$
 for some integer k

3.
$$x^2 = (2k+1)(2k+1)$$

4.
$$x^2 = 4k^2 + 4k + 1$$

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer

2.
$$x = 2k + 1$$
 for some integer k

3.
$$x^2 = (2k+1)(2k+1)$$

4.
$$x^2 = 4k^2 + 4k + 1$$

5.
$$x^2 = 2(2k^2 + 2k) + 1$$
 where $2k^2 + 2k$ is an integer

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer

2.
$$x = 2k + 1$$
 for some integer k

3.
$$x^2 = (2k+1)(2k+1)$$

4.
$$x^2 = 4k^2 + 4k + 1$$

5.
$$x^2 = 2(2k^2 + 2k) + 1$$
 where $2k^2 + 2k$ is an integer

6. $x^2 = 2j + 1$ where $j = 2k^2 + 2k$ is an integer

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer

2.
$$x = 2k + 1$$
 for some integer k

3.
$$x^2 = (2k+1)(2k+1)$$

4.
$$x^2 = 4k^2 + 4k + 1$$

5.
$$x^2 = 2(2k^2 + 2k) + 1$$
 where $2k^2 + 2k$ is an integer

6.
$$x^2 = 2j + 1$$
 where $j = 2k^2 + 2k$ is an integer

7. x^2 is an odd integer

- Example: If x is an odd integer then x^2 is an odd integer
 - Proof:
 - 1. Assume *x* is an odd integer

2.
$$x = 2k + 1$$
 for some integer k

3.
$$x^2 = (2k+1)(2k+1)$$

4.
$$x^2 = 4k^2 + 4k + 1$$

5.
$$x^2 = 2(2k^2 + 2k) + 1$$
 where $2k^2 + 2k$ is an integer

6.
$$x^2 = 2j + 1$$
 where $j = 2k^2 + 2k$ is an integer

- 7. x^2 is an odd integer
- 8. If x is an odd integer then x^2 is an odd integer

• Watch the video on direct proofs in section 2.4

• A number r is <u>rational</u> if there are integers x and y such that:

•
$$y \neq 0$$
 and
• $r = \frac{x}{y}$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c, and d are integers, $b \neq 0$, and $d \neq 0$

8. r + s is a rational number

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$

7.
$$r + s = \frac{x}{y}$$
 where x is an integer, y is an integer, and $y \neq 0$
8. $r + s$ is a rational number

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$
3. $r + s = \frac{a}{b} + \frac{c}{d}$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$
3. $r + s = \frac{a}{b} + \frac{c}{d}$
4. $r + s = \frac{d}{d} \left(\frac{a}{b}\right) + \frac{b}{b} \left(\frac{c}{d}\right)$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$
3. $r + s = \frac{a}{b} + \frac{c}{d}$
4. $r + s = \frac{d}{d} \left(\frac{a}{b}\right) + \frac{b}{b} \left(\frac{c}{d}\right)$
5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$
3. $r + s = \frac{a}{b} + \frac{c}{d}$
4. $r + s = \frac{d}{d} \left(\frac{a}{b}\right) + \frac{b}{b} \left(\frac{c}{d}\right)$
5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$
6. $r + s = \frac{ad+bc}{bd}$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers

2.
$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$ where a, b, c , and d are integers, $b \neq 0$, and $d \neq 0$
3. $r + s = \frac{a}{b} + \frac{c}{d}$
4. $r + s = \frac{d}{d} \left(\frac{a}{b}\right) + \frac{b}{b} \left(\frac{c}{d}\right)$
5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$
6. $r + s = \frac{ad+bc}{bd}$
7. $r + s = \frac{x}{y}$ where $x = ad + bc$ is an integer, $y = bd$ is an integer, and $bd \neq 0$

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers
 - 2. $r = \frac{a}{b}$ and $s = \frac{c}{a}$ where a, b, c, and d are integers, $b \neq 0$, and $d \neq 0$ 3. $r + s = \frac{a}{b} + \frac{c}{a}$ 4. $r + s = \frac{d}{a} \left(\frac{a}{b}\right) + \frac{b}{b} \left(\frac{c}{a}\right)$ 5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$ 6. $r + s = \frac{ad+bc}{bd}$ 7. $r + s = \frac{x}{y}$ where x = ad + bc is an integer, y = bd is an integer, and $bd \neq 0$ 8. r + s is a rational number

- Example if r and s are rational numbers, then r + s is a rational number Proof:
 - 1. Assume *r* and *s* are rational numbers
 - 2. $r = \frac{a}{b}$ and $s = \frac{c}{d}$ where a, b, c, and d are integers, $b \neq 0$, and $d \neq 0$ 3. $r + s = \frac{a}{b} + \frac{c}{d}$ 4. $r + s = \frac{d}{d} \left(\frac{a}{b}\right) + \frac{b}{b} \left(\frac{c}{d}\right)$ 5. $r + s = \frac{ad}{bd} + \frac{bc}{bd}$ 6. $r + s = \frac{ad+bc}{bd}$ 7. $r + s = \frac{x}{y}$ where x = ad + bc is an integer, y = bd is an integer, and $bd \neq 0$
 - 8. r + s is a rational number
 - 9. If r and s are rational numbers, then r + s is a rational number

• Example if a, b, and c are integers, then if a divides b and b divides c, then a divides c

Proof:

1. Assume *a*, *b*, and *c* are integers

• Example if *a*, *b*, and *c* are integers, then if *a* divides *b* and *b* divides *c*, then *a* divides *c*

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume *a* divides *b* and *b* divides *c*

• Example if *a*, *b*, and *c* are integers, then if *a* divides *b* and *b* divides *c*, then *a* divides *c*

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume *a* divides *b* and *b* divides *c*
- 3. b = ai for some integer i

• Example if a, b, and c are integers, then if a divides b and b divides c, then a divides c

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume *a* divides *b* and *b* divides *c*
- 3. b = ai for some integer i
- 4. c = bj for some integer j

• Example if a, b, and c are integers, then if a divides b and b divides c, then a divides c

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume a divides b and b divides c
- 3. b = ai for some integer i
- 4. c = bj for some integer j
- 5. c = aij where ij is an integer

• Example if a, b, and c are integers, then if a divides b and b divides c, then a divides c

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume *a* divides *b* and *b* divides *c*
- 3. b = ai for some integer i
- 4. c = bj for some integer j
- 5. c = aij where ij is an integer
- 6. c = ak where k is an integer

• Example if a, b, and c are integers, then if a divides b and b divides c, then a divides c

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume *a* divides *b* and *b* divides *c*
- 3. b = ai for some integer i
- 4. c = bj for some integer j
- 5. c = aij where ij is an integer
- 6. c = ak where k is an integer
- 7. *a* divides *c*

• Example if *a*, *b*, and *c* are integers, then if *a* divides *b* and *b* divides *c*, then *a* divides *c*

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume *a* divides *b* and *b* divides *c*
- 3. b = ai for some integer i
- 4. c = bj for some integer j
- 5. c = aij where ij is an integer
- 6. c = ak where k is an integer
- 7. *a* divides *c*
- 8. If a divides b and b divides c then a divides c

• Example if a, b, and c are integers, then if a divides b and b divides c, then a divides c

- 1. Assume *a*, *b*, and *c* are integers
- 2. Assume *a* divides *b* and *b* divides *c*
- 3. b = ai for some integer i
- 4. c = bj for some integer j
- 5. c = aij where ij is an integer
- 6. c = ak where k is an integer
- 7. *a* divides *c*
- 8. If a divides b and b divides c then a divides c
- 9. if *a*, *b*, and *c* are integers, then if *a* divides *b* and *b* divides *c*, then *a* divides *c*

Section 2.5 Proofs by Contrapositive

- If it is difficult to prove $p \to q$ by a direct proof, we can instead prove $p \to q$ by a proof by contrapositive
- Since $p \to q \equiv \neg q \to \neg p$, we can prove $p \to q$ by proving $\neg q \to \neg p$ by using a direct proof

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd
 - 2. *n* is even

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd
 - 2. *n* is even
 - 3. n = 2k for some integer k

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd
 - 2. *n* is even
 - 3. n = 2k for some integer k
 - 4. 3n + 2 = 6k + 2

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd
 - 2. *n* is even
 - 3. n = 2k for some integer k
 - 4. 3n + 2 = 6k + 2
 - 5. 3n + 2 = 2(3k + 1) where (3k + 1) is an integer because k is an integer

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd
 - 2. *n* is even
 - 3. n = 2k for some integer k
 - 4. 3n + 2 = 6k + 2
 - 5. 3n + 2 = 2(3k + 1) where (3k + 1) is an integer because k is an integer
 - 6. 3n + 2 is even

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd
 - 2. *n* is even
 - 3. n = 2k for some integer k
 - 4. 3n + 2 = 6k + 2
 - 5. 3n + 2 = 2(3k + 1) where (3k + 1) is an integer because k is an integer
 - 6. 3n + 2 is even
 - 7. 3n + 2 is not odd

- Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.
- This is difficult to prove using a direct proof, so instead prove that if n is not odd, then 3n + 2 is not odd
 - 1. Assume that *n* is an integer and *n* is not odd
 - 2. *n* is even
 - 3. n = 2k for some integer k
 - 4. 3n + 2 = 6k + 2
 - 5. 3n + 2 = 2(3k + 1) where (3k + 1) is an integer because k is an integer
 - 6. 3n + 2 is even
 - 7. 3n + 2 is not odd
 - 8. if n is an integer and 3n + 2 is odd, then n is odd

- Another Example: Prove that if n = ab where a and b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$
- Rephrase: If a and b are positive integers then if n = ab then $a \le \sqrt{n}$ or $b \le \sqrt{n}$
- Replace inner implication with its contrapositive:

• Proof of

If a and b are positive integers, then if it is not the case that $a \le \sqrt{n}$ or $b \le \sqrt{n}$ then it is not the case that n = ab

1. Assume *a* and *b* are positive integers

• Proof of

- 1. Assume *a* and *b* are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$

• Proof of

- 1. Assume *a* and *b* are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$

• Proof of

- 1. Assume *a* and *b* are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$

• Proof of

- 1. Assume *a* and *b* are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. ab > n

• Proof of

- 1. Assume *a* and *b* are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. ab > n
- 6. It is not the case that n = ab

• Proof of

- 1. Assume *a* and *b* are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. ab > n
- 6. It is not the case that n = ab
- 7. If it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$ then it is not the case that n = ab

• Proof of

- 1. Assume *a* and *b* are positive integers
- 2. Assume it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$
- 3. By De Morgan's law: $a > \sqrt{n}$ and $b > \sqrt{n}$
- 4. $ab > \sqrt{n}\sqrt{n}$
- 5. ab > n
- 6. It is not the case that n = ab
- 7. If it is not the case that $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$ then it is not the case that n = ab
- 8. If a and b are positive integers, then if it is not the case that $a \le \sqrt{n}$ or $b \le \sqrt{n}$ then it is not the case that n = ab