
Section 2.7
Proof By Cases
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Proofs by Cases

• Proofs by cases are generalizations of exhaustive proofs

• Instead of considering specific values, specific categories of values are 
used

• The categories must be exhaustive; i.e. they must cover all situations 
applicable to the theorem being proved
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Proofs by Cases

• Example: Prove that if 𝑛 is an integer, then 𝑛2 ≥ 𝑛.

• Proof by cases

1. Assume 𝑛 is an integer

2. Since n is an integer, it falls into one of 3 categories: 𝑛 < 0, 𝑛 = 0, 𝑛 > 0

3. Case1: Assume that 𝑛 < 0

4. 𝑛2 is a positive integer

5. 𝑛 < 0 ≤ 𝑛2

6. 𝑛2 ≥ 𝑛

7. Therefore, if 𝑛 < 0, then 𝑛2 ≥ 𝑛
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Proofs by Cases

• Proof by cases continued

8. Case2: Assume that 𝑛 = 0

9. 𝑛2 = 0 ≥ 0

10. 𝑛2 ≥ 𝑛

11. Therefore, if 𝑛 = 0, then 𝑛2 ≥ 𝑛

12. Case3: Assume that 𝑛 > 0

13. 𝑛 ≥ 1

14. 𝑛 ⋅ 𝑛 ≥ 𝑛 ⋅ 1

15. 𝑛2 ≥ 𝑛

16. Therefore, if 𝑛 > 0, then 𝑛2 ≥ 𝑛

17. Therefore, if 𝑛 is an integer, then 𝑛2 ≥ 𝑛
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Proofs by Cases

• Another example: Prove that 𝑥 ⋅ 𝑦 = |𝑥| ⋅ |𝑦|

• Proof by cases

1. Assume that 𝑥 and 𝑦 are real numbers

2. There are 4 possible cases for 𝑥 and 𝑦: 1) 𝑥 and 𝑦 are both non-negative, 2) 
𝑥 is non-negative and 𝑦 is negative, 3) 𝑥 is negative and 𝑦 is non-negative, 4) 
𝑥 and 𝑦 are both negative

3. Case 1: Assume that 𝑥 and 𝑦 are both non-negative

4. 𝑥 ⋅ 𝑦 = 𝑥 ⋅ 𝑦 = |𝑥| ⋅ |𝑦|

5. Therefore, if 𝑥 and 𝑦 are both non-negative, then 𝑥 ⋅ 𝑦 = |𝑥| ⋅ |𝑦|
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Proofs by Cases

• Except for assumptions, each line below follows from the lines above 
it.

6. Case 2: Assume that 𝑥 is non-negative and 𝑦 is negative

7. 𝑥 ⋅ 𝑦 = − 𝑥 ⋅ 𝑦 = 𝑥 ⋅ −𝑦 = 𝑥 ⋅ |𝑦| = |𝑥| ⋅ |𝑦|

8. Therefore, if 𝑥 is non-negative and 𝑦 is negative, then 𝑥 ⋅ 𝑦 = |𝑥| ⋅ |𝑦|

9. Case 3: Assume that 𝑥 is negative and 𝑦 is non-negative

10. 𝑥 ⋅ 𝑦 = − 𝑥 ⋅ 𝑦 = −𝑥 ⋅ 𝑦 = |𝑥| ⋅ 𝑦 = |𝑥| ⋅ |𝑦|

11. Therefore, if 𝑥 is negative and 𝑦 is non-negative, then 𝑥 ⋅ 𝑦 = |𝑥| ⋅ |𝑦|
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Proofs by Cases

• Except for assumptions, each line below follows from the lines above 
it.

12. Case 4: Assume that 𝑥 and 𝑦 are both negative

13. 𝑥 ⋅ 𝑦 = 𝑥 ⋅ 𝑦 = −𝑥 ⋅ −𝑦 = |𝑥| ⋅ |𝑦|

14. Therefore, if 𝑥 and 𝑦 are both negative, then 𝑥 ⋅ 𝑦 = |𝑥| ⋅ |𝑦|

15. Therefore, 𝑥 ⋅ 𝑦 = |𝑥| ⋅ |𝑦|
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Without Loss of Generality

• In the previous proof there were two cases that were extremely 
similar:

• 𝑥 is non-negative and 𝑦 is negative

• 𝑥 is negative and 𝑦 is non-negative

• In both cases there is a non-negative integer and a negative integer

• They are essentially the same because 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥

• These two cases could have been combined together without a loss 
of generality by considering just one of the two
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Without Loss of Generality

• Example:  For any integers 𝑥 and 𝑦, if 𝑥 is even or 𝑦 is even, then 𝑥𝑦 is 
even.

• Proof

1. Assume that 𝑥 and 𝑦 are integers and 𝑥 is even or 𝑦 is even

2. Without loss of generality, assume that 𝑥 is even

3. 𝑥 = 2𝑗 for some integer 𝑗

4. 𝑥𝑦 = 2𝑗𝑦 where 𝑗𝑦 is an integer 

5. 𝑥𝑦 is even

6. if 𝑥 is even or 𝑦 is even, then 𝑥𝑦 is even.
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Without Loss of Generality

• Another example:  Prove that if 𝑥 and 𝑦 are integers, and both 𝑥𝑦 and 
𝑥 + 𝑦 are even, then both 𝑥 and 𝑦 are even.

• Proof

1. For a proof by contraposition, assume it is not the case that both 𝑥 and 𝑦
are even

2. At least one of 𝑥 and 𝑦 is odd. Without loss of generality, assume that 𝑥 is 
odd.

3. There are two cases for 𝑦: 𝑦 is even and 𝑦 is odd
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Without Loss of Generality

4. Case 1: Assume 𝑦 is even

5. 𝑥 = 2𝑖 + 1 for some integer 𝑖

6. 𝑦 = 2𝑘 for some integer 𝑘

7. 𝑥 + 𝑦 = 2𝑖 + 1 + 2𝑘

8. 𝑥 + 𝑦 = 2𝑖 + 2𝑘 + 1

9. 𝑥 + 𝑦 = 2(𝑖 + 𝑘) + 1 where 𝑖 + 𝑘 is an integer

10. 𝑥 + 𝑦 is odd

11. It is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

12. Therefore, if 𝑦 is even, then it is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even
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4. Case 1: Assume 𝑦 is even
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4. Case 1: Assume 𝑦 is even

5. 𝑥 = 2𝑖 + 1 for some integer 𝑖

6. 𝑦 = 2𝑘 for some integer 𝑘

7. 𝑥 + 𝑦 = 2𝑖 + 1 + 2𝑘

8. 𝑥 + 𝑦 = 2𝑖 + 2𝑘 + 1

9. 𝑥 + 𝑦 = 2(𝑖 + 𝑘) + 1 where 𝑖 + 𝑘 is an integer

10. 𝑥 + 𝑦 is odd

11. It is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

12. Therefore, if 𝑦 is even, then it is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

49



Without Loss of Generality
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Without Loss of Generality

4. Case 1: Assume 𝑦 is even
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Without Loss of Generality

4. Case 1: Assume 𝑦 is even
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Without Loss of Generality

4. Case 1: Assume 𝑦 is even

5. 𝑥 = 2𝑖 + 1 for some integer 𝑖

6. 𝑦 = 2𝑘 for some integer 𝑘
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Without Loss of Generality

13. Case 2: Assume 𝑦 is odd

14. 𝑥 = 2𝑖 + 1 for some integer 𝑖

15. 𝑦 = 2𝑘 + 1 for some integer 𝑘

16. 𝑥𝑦 = 2𝑖 + 1 2𝑘 + 1

17. 𝑥𝑦 = 4𝑖𝑘 + 2𝑖 + 2𝑘 + 1

18. 𝑥𝑦 = 2(2𝑖𝑘 + 𝑖 + 𝑘) + 1

19. 𝑥𝑦 is odd

20. It is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

21. Therefore, if 𝑦 is odd, then it is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

22. If it is not the case that both 𝑥 and 𝑦 are even, then it is not the case that both 𝑥𝑦 and 𝑥 +
𝑦 are even

23. If both 𝑥𝑦 and 𝑥 + 𝑦 are even, then both 𝑥 and 𝑦 are even. 54
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13. Case 2: Assume 𝑦 is odd
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15. 𝑦 = 2𝑘 + 1 for some integer 𝑘

16. 𝑥𝑦 = 2𝑖 + 1 2𝑘 + 1
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18. 𝑥𝑦 = 2(2𝑖𝑘 + 𝑖 + 𝑘) + 1

19. 𝑥𝑦 is odd

20. It is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

21. Therefore, if 𝑦 is odd, then it is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even
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13. Case 2: Assume 𝑦 is odd
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15. 𝑦 = 2𝑘 + 1 for some integer 𝑘

16. 𝑥𝑦 = 2𝑖 + 1 2𝑘 + 1

17. 𝑥𝑦 = 4𝑖𝑘 + 2𝑖 + 2𝑘 + 1

18. 𝑥𝑦 = 2(2𝑖𝑘 + 𝑖 + 𝑘) + 1
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16. 𝑥𝑦 = 2𝑖 + 1 2𝑘 + 1
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18. 𝑥𝑦 = 2(2𝑖𝑘 + 𝑖 + 𝑘) + 1

19. 𝑥𝑦 is odd

20. It is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

21. Therefore, if 𝑦 is odd, then it is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

22. If it is not the case that both 𝑥 and 𝑦 are even, then it is not the case that both 𝑥𝑦 and 𝑥 +
𝑦 are even

23. If both 𝑥𝑦 and 𝑥 + 𝑦 are even, then both 𝑥 and 𝑦 are even. 63
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13. Case 2: Assume 𝑦 is odd

14. 𝑥 = 2𝑖 + 1 for some integer 𝑖

15. 𝑦 = 2𝑘 + 1 for some integer 𝑘

16. 𝑥𝑦 = 2𝑖 + 1 2𝑘 + 1

17. 𝑥𝑦 = 4𝑖𝑘 + 2𝑖 + 2𝑘 + 1

18. 𝑥𝑦 = 2(2𝑖𝑘 + 𝑖 + 𝑘) + 1

19. 𝑥𝑦 is odd

20. It is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

21. Therefore, if 𝑦 is odd, then it is not the case that both 𝑥𝑦 and 𝑥 + 𝑦 are even

22. If it is not the case that both 𝑥 and 𝑦 are even, then it is not the case that both 𝑥𝑦 and 𝑥 +
𝑦 are even

23. If both 𝑥𝑦 and 𝑥 + 𝑦 are even, then both 𝑥 and 𝑦 are even. 64
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