Section 3.4 More Set Operations

1

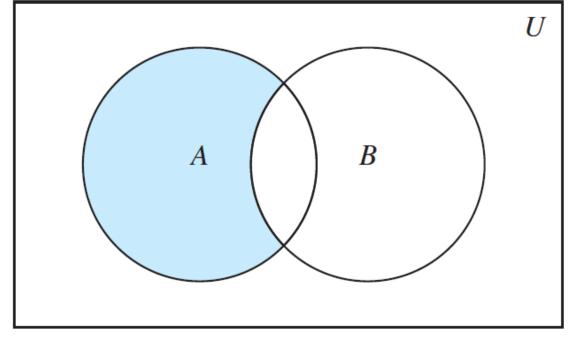
Set Difference

• If A and B are sets, then the difference of A and B is the set containing exactly the members of A that are not also members of B

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$$
$$\{1, 2, 3\} - \{1, 3, 5\} = \{2\}$$

Set Difference



A - B is shaded.

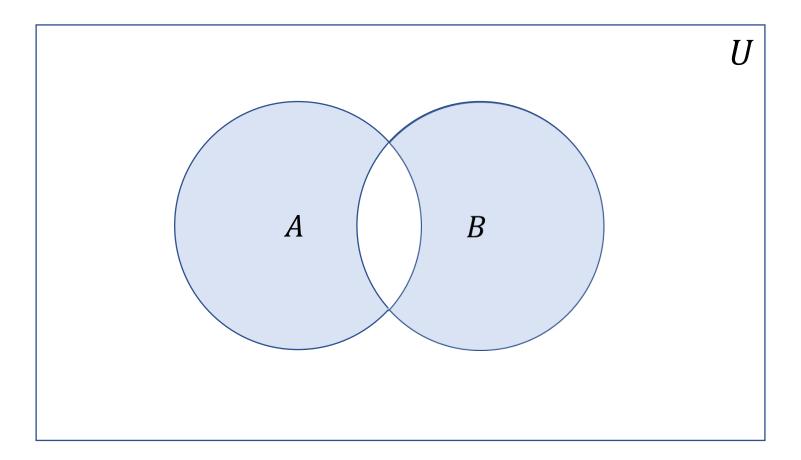
Symmetric Difference

• If A and B are sets, then the symmetric difference of A and B is the set containing exactly the members of A that are not also in B and the members of B that are not also in A

$$A \oplus B = (A - B) \cup (B - A)$$

$$\{1, 3, 5\} \oplus \{1, 2, 3\} = \{2, 5\}$$

Symmetric Difference



 $A \oplus B$ is shaded

Set Complement

• The complement of a set A is the set containing the members of the universal set, U, that are not also in A

$$\overline{A} = \{ x \mid x \in U \land x \notin A \}$$

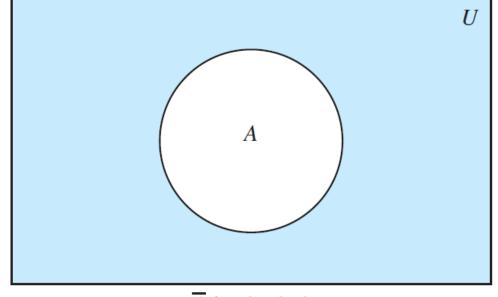
• $x \in \overline{A}$ if and only if $x \notin A$

Set Complement

- If the universal set is Z^+ (all positive integers),
- and A is the set of positive integers greater than 10, $A = \{11, 12, 13, ...\}$. Then:

$$\overline{A} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Set Complement



 \overline{A} is shaded.

Examples

- The universe exactly contains the integers from 1 to 8, $U = \{1,2,3,4,5,6,7,8\}$
- $A = \{1, 4, 5, 7\}$
- $B = \{2, 4, 6, 7\}$
- $C = \{3, 5, 6, 7\}$

 $\overline{A} \cap \overline{B} = \overline{\{1, 4, 5, 7\}} \cap \overline{\{2, 4, 6, 7\}}$ $= \{2, 3, 6, 8\} \cap \{1, 3, 5, 8\}$ $= \{3, 8\}$

$$A \cap B = \{1, 4, 5, 7\} \cap \{2, 4, 6, 7\}$$
$$= \overline{\{4, 7\}}$$
$$= \{1, 2, 3, 5, 6, 8\}$$

Examples

- The universe exactly contains the integers from 1 to 8, , $U = \{1,2,3,4,5,6,7,8\}$
- $A = \{1, 4, 5, 7\}$
- $B = \{2, 4, 6, 7\}$
- $C = \{3, 5, 6, 7\}$

$$\overline{A} - \overline{C} = \overline{\{1, 4, 5, 7\}} - \overline{\{3, 5, 6, 7\}} \qquad \overline{A - C} = \overline{\{1, 4, 5, 7\}} - \{3, 5, 6, 7\}$$
$$= \{2, 3, 6, 8\} - \{1, 2, 4, 8\} \qquad = \overline{\{1, 4\}}$$
$$= \{3, 6\} \qquad = \{2, 3, 5, 6, 7, 8\}$$

Section 3.5 Set Identities

Set Identities

- The set operations union, intersection and complement can be expressed using logical operations
 - $x \in A \cup B \leftrightarrow (x \in A \lor x \in B)$
 - $x \in A \cap B \leftrightarrow (x \in A \land x \in B)$
 - $x \in \overline{A} \leftrightarrow \neg (x \in A)$
 - $x \in U \leftrightarrow T$
 - $x \in \emptyset \leftrightarrow F$

De Morgan's Law for Set Intersection

$$x \in \overline{A \cap B} \iff \neg (x \in A \cap B)$$

$$\leftrightarrow \neg (x \in A \land x \in B)$$

$$\leftrightarrow \neg (x \in A) \lor \neg (x \in B)$$

$$\leftrightarrow x \in \overline{A} \lor x \in \overline{B}$$

$$\leftrightarrow x \in \overline{A} \cup \overline{B}$$

Therefore $\overline{A \cap B} = \overline{A} \cup \overline{B}$

De Morgan's Law for Set Union

$$x \in \overline{A \cup B} \iff \neg (x \in A \cup B)$$
$$\iff \neg (x \in A \lor x \in B)$$
$$\iff \neg (x \in A) \land \neg (x \in B)$$
$$\iff x \in \overline{A} \land x \in \overline{B}$$
$$\iff x \in \overline{A} \land \overline{B}$$

Therefore $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Set Identity Laws

Set Identity	Name	
$ \begin{array}{l} A \cap U = A \\ A \cup \phi = A \end{array} $	Identity laws	
$\begin{array}{l} A \cup U = U \\ A \cap \phi = \phi \end{array}$	Domination laws	
$ \begin{array}{c} A \cup A = A \\ A \cap A = A \end{array} $	Idempotent laws	
$\overline{\overline{A}} = A$	Double Complement law	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	
$\overline{\begin{array}{c} \overline{A \cap B} \\ \overline{A \cup B} \end{array}} = \overline{A} \cup \overline{B}$	De Morgan's laws	
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	
$ \begin{array}{c} A \cup \overline{A} = U \\ A \cap \overline{A} = \emptyset \end{array} $	Complement laws	

Proving Sets are Equal Using Set Identities

• Example: Show that $A \cup (B \cap C) = (\overline{C} \cup \overline{B}) \cap \overline{A}$

 $\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{B \cap C}$ $=\overline{A}\cap\left(\overline{B}\cup\overline{C}\right)$ $= (\overline{B} \cup \overline{C}) \cap \overline{A}$ $= \left(\overline{C} \cup \overline{B}\right) \cap \overline{A}$

De Morgan

De Morgan

Commutativity of intersection

Commutativity of union

Proving Sets are Equal Using Membership Tables

- Similar to truth tables
- Each column corresponds to a set
- The leftmost columns are for set variables
- Each row is for a possible combination of sets that an item can be a member of

Proving Sets are Equal Using Membership Tables

- Example: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- Columns for $\overline{A \cap B}$, $\overline{A} \cup \overline{B}$, $A \cap B$, \overline{A} , \overline{B} , A, B
- Rows for the possible ways an item can be in or not in A and B
- Use 1 to indicate membership and 0 to indicate non-membership

Proving Sets are Equal Using Membership Tables

• Example: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

A	В	\overline{A}	\overline{B}	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Since the columns for $\overline{A \cap B}$ and $\overline{A} \cup \overline{B}$ are the same, they are equal