
Section 3.6
Cartesian Products
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Unordered Sets

• Sets are unordered

1, 2, 3 = 2, 3, 1
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Ordered N-Tuples

• Sometimes the order of items is important such as when we want to 
talk about the first, second, and third place finishers of a race

• In this case, we can use an ordered triple:

Chris, Stacy, Sandy

• Note that we use parentheses instead of the curly braces used for 
sets
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1st Chris

2nd Stacy

3rd Sandy



Ordered N-Tuples

• In general, to establish an order of 𝑛 items, we use an ordered 𝑛-
tuple

𝑎1, 𝑎2, ⋯ , 𝑎𝑛

• Since the order matters:

Chris, Stacy, Sandy ≠ Stacy, Sandy, Chris
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Ordered N-Tuples

• Unlike sets, repetition is allowed in ordered n-tuples

• Example: what are the different ways that some one can give you 7-
cents using 3 coins?

penny, penny, nickel  

penny, nickel, penny

nickel, penny, penny
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Ordered N-Tuples

• Two n-tuples are equal if they have the same items in the same order:

𝑎1, 𝑎2, ⋯ , 𝑎𝑛 = 𝑏1, 𝑏2, ⋯ , 𝑏𝑛

if and only if

∀𝑖 1 ≤ 𝑖 ≤ 𝑛 → 𝑎𝑖 = 𝑏𝑖
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Cartesian Product

• The cartesian product of two sets 𝐴 and 𝐵, 𝐴 × 𝐵, is the set 
containing all of the ways that a member of 𝐴 can be paired with a 
member of 𝐵.

𝐴 × 𝐵 = 𝑎, 𝑏  | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵

• Note that 𝑎, 𝑏  is an ordered pair (2-tuple)
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Cartesian Product

• What is chocolate, vanilla, strawberry × ice cream, milkshake ?

• A table may be helpful:
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ice cream milkshake

chocolate chocolate, ice cream chocolate, milkshake

vanilla vanilla, ice cream vanilla,milkshake

strawberry strawberry,ice cream strawberry,milkshake



Cartesian Product

• What is chocolate, vanilla, strawberry × ice cream, milkshake ?

chocolate, vanilla, strawberry  × ice cream, milkshake
= ሼ

ሽ

chocolate, ice cream , chocolate, milkshake ,
 vanilla, ice cream , vanilla, milkshake ,
 strawberry, ice cream , strawberry, milkshake
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Cartesian Product

• Any finite number of sets can be combined using the cartesian 
product:

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 = 𝑎1, 𝑎2, ⋯ 𝑎𝑛  |  𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2, ⋯ 𝑎𝑛 ∈ 𝐴𝑛
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Cartesian Product

• Example
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1, 2 × 𝑎, 𝑏 × 𝑋 × 3, 𝑐 = ሼ 1, 𝑎, 𝑋, 3 , 1, 𝑎, 𝑋, 𝑐 , 1, 𝑏, 𝑋, 3 , 1, 𝑏, 𝑋, 𝑐 ,

2, 𝑎, 𝑋, 3 , 2, 𝑎, 𝑋, 𝑐 , 2, 𝑏, 𝑋, 3 , 2, 𝑏, 𝑋, 𝑐 ሽ



Cartesian Product

• The cartesian product of a set 𝐴 with itself is abbreviated as 𝐴2

𝐴2 = 𝐴 × 𝐴 = 𝑎, 𝑏  |𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴

• In general:

𝐴𝑛 = 𝐴 × 𝐴 × ⋯ × 𝐴
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𝑛 times



Cartesian Product

• Cartesian products are not always finite. Recall that 𝑵 is the set of natural 
numbers, 0, 1, 2, 3, …  

𝑵 × 𝑵
= 0, 0 , 0, 1 , 0, 2 , … , 1, 0 , 1, 1 , 1, 2 , … 2, 0 , 2, 1 , 2, 2 , … , …
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Sets of N-Tuples

• The cartesian product of sets 𝐴 and 𝐵, 𝐴 × 𝐵, contains all possible 
pairs of values from 𝐴 and 𝐵

𝐴 × 𝐵 = 𝑎, 𝑏  | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵  

• It is possible to have subsets of 𝐴 × 𝐵
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Sets of N-Tuples

• Example: Let 𝐴 = 𝑎, 𝑏, 𝑐  and 𝐵 = 1, 2

• 𝐴 × 𝐵 = 𝑎, 1 , 𝑎, 2 , 𝑏, 1 , 𝑏, 2 , 𝑐, 1 , 𝑐, 2

𝑎, 1 , 𝑏, 1 , 𝑐, 1 ⊆ 𝐴 × 𝐵

𝑎, 𝑐 × 2 ⊆ 𝐴 × 𝐵
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Example 1

• What is ∅ × 𝑥, 𝑦, 𝑧  ?
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Example 1

• What is ∅ × 𝑥, 𝑦, 𝑧  ?

•  𝐴 × 𝐵 = 𝑎, 𝑏  𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵

• ∅ × 𝑥, 𝑦, 𝑧 = ∅
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Example 2
• Prove that if 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷 then 𝐴 × 𝐵 ⊆ 𝐶 × 𝐷 

• 𝐴 ⊆ 𝐶 means if 𝑥 ∈ 𝐴 then 𝑥 ∈ 𝐶 

• 𝐵 ⊆ 𝐷 means if 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐷 

• 𝐴 × 𝐵 ⊆ 𝐶 × 𝐷 means if 𝑥, 𝑦 ∈ 𝐴 × 𝐵 then 𝑥, 𝑦 ∈  𝐶 × 𝐷 

• 𝑥, 𝑦 ∈ 𝐴 × 𝐵 means 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵

• 𝑥, 𝑦 ∈ 𝐶 × 𝐷 means 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐷 
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Example 2
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Example 2
• Prove that if 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷 then 𝐴 × 𝐵 ⊆ 𝐶 × 𝐷 

First, try using a few sets

• 𝐴 = 𝑥, 𝑦

• 𝐵 = 1, 2

• 𝐶 = 𝑥, 𝑦, 𝑧

• 𝐷 = 1, 2, 3

• 𝐴 × 𝐵 = 𝑥, 1 , 𝑥, 2 , 𝑦, 1 , 𝑦, 2

• 𝐶 × 𝐷 = 𝑥, 1 , 𝑥, 2 , 𝑥, 3 , 𝑦, 1 , 𝑦, 2 , 𝑦, 3 , 𝑧, 1 , 𝑧, 2 , 𝑧, 3
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Example 2
• Prove that if 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷 then 𝐴 × 𝐵 ⊆ 𝐶 × 𝐷 

1. Assume 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷 

2. Assume 𝑥, 𝑦 ∈ 𝐴 × 𝐵 

3.  𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵

4.  𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐷 because 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷  

5. 𝑥, 𝑦 ∈ 𝐶 × 𝐷

6.  If 𝑥, 𝑦 ∈ 𝐴 × 𝐵 then 𝑥, 𝑦 ∈ 𝐶 × 𝐷

7.  𝐴 × 𝐵 ⊆ 𝐶 × 𝐷

8. If 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷 then 𝐴 × 𝐵 ⊆ 𝐶 × 𝐷
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Example 3
• Prove that if 𝐴, 𝐵, and 𝐶 are nonempty sets and  𝐴 × 𝐵 =

𝐴 × 𝐶 then 𝐵 = 𝐶

1. Assume 𝐴, 𝐵, and 𝐶 are nonempty sets and  𝐴 × 𝐵 = 𝐴 × 𝐶 

2.  𝑎 ∈ 𝐴 for some 𝑎 in 𝐴 since 𝐴 is not empty

3. Assume 𝑥 ∈ 𝐵

4. 𝑎, 𝑥 ∈ 𝐴 × 𝐵I 

5. 𝑎, 𝑥 ∈ 𝐴 × 𝐶

6.  𝑥 ∈ 𝐶

7.  If 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐶
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