Section 4.1 Functions

1

Definition of a Function

- Let A and B be nonempty sets. A <u>function</u> f assigns each member of A to exactly one member of B
	- f is a function (mapping, transformation) from A to B
- $f: A \rightarrow B$ means f is a function from A to B
- The notation $f(a)$ denotes the member of set B assigned to a

Example

• Let $f: \{3, 4\} \rightarrow \{5, 10, 15\}$ where:

$f(3) = 15$

 $f(4) = 5$

Domain and Co-domain of a Function

- When $f: A \rightarrow B$,
	- f maps A to B
	- \bullet A is the domain of f
	- B is the co-domain of f (also called the target of f)

• If we represent sets A and B with Venn diagrams, then we can think of a function $f: A \rightarrow B$ as the set of arrows from elements of A to elements of B such that each element of A having exactly one arrow starting from it and ending at an element of B

Images and Preimages

- When $f: A \rightarrow B$, and $f(a) = b$
	- \bullet b is the image of a
	- a is the preimage of b
	- The range (or image) of f is the set $\{f(a) | a \in A\}$

Example Co-domain vs. Range

- Let $f : \mathbf{Z} \to \mathbf{N}$ be a function from the integers to the natural numbers where: $f(x) = x^2$
	- The co-domain (target) of f is N
	- The range of f is $\{0, 1, 4, 9, 16, 25, ...\}$

Example: Co-domain vs. Range

• Let G be a function assigning grades to students

- The domain of G is {Adams, Chou, Goodfriend, Rodriguez, Stevens}
- The co-domain (target) of G is ${A, B, C, D, F}$
- The range of G is $\{A, B, C, F\}$
- The range of a function is always a subset of the function's co-domain (target)

Specifying a Function

• Often, a function can be specified by using a formula:

$$
f: N \to N
$$

\n
$$
g: Z \to R
$$

\n
$$
f(x) = x + 1
$$

\n
$$
g(x) = \sin(x)/2
$$

\n
$$
h: N \times Z \to R
$$

\n
$$
h: N \times Z \to R
$$

\n
$$
h: N \times Z \to R
$$

Specifying a Function

• A function can also be specified by using rules:

$$
f: \mathbf{Z} \to \mathbf{Z}
$$

$$
f(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}
$$

Specifying a Function

- A function matches each element of its domain to an element in its co-domain
- A function can be described as a set of ordered pairs

$$
f: N \to N
$$

$$
f(x) = x^2
$$

 $\{(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), \cdots\}$

 $\{(a, b) \mid a \in N, b \in N, \text{and } b = f(a)\}\$

Function Equality

- Two functions f and g are equal if:
	- f and g have the same domain
	- f and g have the same co-domain (target)
	- $f(x) = g(x)$ for every x in their domain

Images of Sets

- Let f be a function from set A to set B
- If $S \subseteq A$, then

$$
f(S) = \{f(a) | a \in S\}
$$

- $f(S)$ is called the image of S under f
- Note that the term "image" can also be used when a function is applied to a single member of the domain:
	- When $a \in A$, $f(a)$ is the image of a

Section 4.2 The Floor and Ceiling Functions

The Floor Function

- The floor function takes a real number and returns the largest integer that is less than or equal to the argument
- $floor: \mathbb{R} \rightarrow \mathbb{Z}$
- $floor(x)$ is also written as $\lfloor x \rfloor$

The Floor Function

• Examples

$$
[3.1] = 3
$$

$$
[3.8] = 3
$$

$$
[3] = 3
$$

$$
[-3.5] = -4
$$

The Ceiling Function

- The ceiling function takes a real number and returns the smallest integer that is greater than or equal to the argument
- $ceil: R \rightarrow Z$
- $ceil(x)$ is also written as $[x]$

The Ceiling Function

• Examples

 $[3.1] = 4$ $[3.8] = 4$ $[3] = 3$ $[-3.5] = -3$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer

$$
4. \qquad \qquad [x] = x
$$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$
	- 6. If x is an integer, then $\lfloor x \rfloor < x + 1$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$
	- 6. If x is an integer, then $\lfloor x \rfloor < x + 1$
	- 7. Case 2: Assume that x is not an integer

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$
	- 6. If x is an integer, then $\lfloor x \rfloor < x + 1$
	- 7. Case 2: Assume that x is not an integer
	- 8. $x = n + d$ where *n* is an integer and *d* is a real number where $0 < d < 1$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$
	- 6. If x is an integer, then $\lfloor x \rfloor < x + 1$
	- 7. Case 2: Assume that x is not an integer
	- 8. $x = n + d$ where *n* is an integer and *d* is a real number where $0 < d < 1$
	- 9. $[x] = [n + d] = n + 1 < n + d + 1 = x + 1$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$
	- 6. If x is an integer, then $\lfloor x \rfloor < x + 1$
	- 7. Case 2: Assume that x is not an integer
	- 8. $x = n + d$ where *n* is an integer and *d* is a real number where $0 < d < 1$
	- 9. $[x] = [n + d] = n + 1 < n + d + 1 = x + 1$

10. $\lceil x \rceil < x + 1$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$
	- 6. If x is an integer, then $\lfloor x \rfloor < x + 1$
	- 7. Case 2: Assume that x is not an integer
	- 8. $x = n + d$ where *n* is an integer and *d* is a real number where $0 < d < 1$
	- 9. $[x] = [n + d] = n + 1 < n + d + 1 = x + 1$

10. $\lceil x \rceil < x + 1$

11. If x is not an integer, then $[x] < x + 1$

- If x is a real number, then $[x] < x + 1$
- Proof: by cases
	- 1. Assume x is a real number
	- 2. There are two cases: x is an integer or x is not an integer
	- 3. Case 1: Assume x is an integer
	- 4. $[x] = x$
	- 5. $[x] < x + 1$
	- 6. If x is an integer, then $\lfloor x \rfloor < x + 1$
	- 7. Case 2: Assume that x is not an integer
	- 8. $x = n + d$ where *n* is an integer and *d* is a real number where $0 < d < 1$
	- 9. $[x] = [n + d] = n + 1 < n + d + 1 = x + 1$
	- 10. $[x] < x + 1$
	- 11. If x is not an integer, then $[x] < x + 1$
	- 12. If x is a real number, then $[x] < x + 1$