
Section 4.5
Composition of Functions
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• Assume functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶

• Create a new function ℎ: 𝐴 → 𝐶

• where ℎ 𝑎 = 𝑔(𝑓 𝑎 )

• Function ℎ is the composition of functions 𝑓 and 𝑔

• Instead of writing ℎ 𝑎 = 𝑔(𝑓 𝑎 ), we can write ℎ = 𝑔 ∘ 𝑓

• 𝑔 ∘ 𝑓 (𝑎) = 𝑔(𝑓 𝑎 )
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• The composition of functions can be described by a diagram

• Example

• 𝐴 = 𝑎, 𝑏, 𝑐

• 𝐵 = 1, 2, 3, 4

• 𝐶 = 𝑏𝑒𝑎𝑟, 𝑐𝑎𝑡, 𝑑𝑜𝑔 𝑓: 𝐴 → 𝐵

𝑓 𝑎 = 3

𝑓 𝑏 = 1

𝑓 𝑐 = 4

𝑔: 𝐵 → 𝐶

𝑔 1 = 𝑐𝑎𝑡

𝑔 2 = 𝑑𝑜𝑔

𝑔 3 = 𝑏𝑒𝑎𝑟

𝑔 4 = 𝑏𝑒𝑎𝑟
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• Example: Assume that 𝑓 is a function that maps movie categories 
to popularity and 𝑔 is a function that maps movie titles to movie 
categories

𝑓: Movie−Category → popular, not−popular

𝑔: Movie−Title → Movie−Category

𝑓 science−fiction = popular

𝑔 "Star Wars" = science−fiction
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• Example continued: Then 𝑓 ∘ 𝑔 is a function that maps movie 
titles to their popularity

𝑓 ∘ 𝑔 "Star Wars" = 𝑓(𝑔("Star Wars")) = popular
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• Another example: Assume 𝑓: 𝒁 → 𝒁 and 𝑔: 𝒁 → 𝒁 where

𝑓 𝑥 = 2𝑥 + 3

𝑔 𝑥 = 3𝑥 + 2

• Then
𝑓 ∘ 𝑔 = 𝑓 𝑔 𝑥

= 2 𝑔 𝑥 + 3

= 2 3𝑥 + 2 + 3

= 6𝑥 + 4 + 3

= 6𝑥 + 7
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• Another example: Assume 𝑓: 𝒁 → 𝒁 and 𝑔: 𝒁 → 𝒁 where

𝑓 𝑥 = 2𝑥 + 3

𝑔 𝑥 = 3𝑥 + 2

• Then
𝑓 ∘ 𝑔 = 𝑓 𝑔 𝑥

= 2 𝑔 𝑥 + 3

= 2 3𝑥 + 2 + 3

= 6𝑥 + 4 + 3

= 6𝑥 + 7
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• Another example: Assume 𝑓: 𝒁 → 𝒁 and 𝑔: 𝒁 → 𝒁 where

𝑓 𝑥 = 2𝑥 + 3

𝑔 𝑥 = 3𝑥 + 2

• Then
𝑓 ∘ 𝑔 = 𝑓 𝑔 𝑥

= 2 𝑔 𝑥 + 3

= 2 3𝑥 + 2 + 3

= 6𝑥 + 4 + 3

= 6𝑥 + 7
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• Another example: Assume 𝑓: 𝒁 → 𝒁 and 𝑔: 𝒁 → 𝒁 where

𝑓 𝑥 = 2𝑥 + 3

𝑔 𝑥 = 3𝑥 + 2

• Then
𝑓 ∘ 𝑔 = 𝑓 𝑔 𝑥

= 2 𝑔 𝑥 + 3

= 2 3𝑥 + 2 + 3

= 6𝑥 + 4 + 3

= 6𝑥 + 7
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• Another example: Assume 𝑓: 𝒁 → 𝒁 and 𝑔: 𝒁 → 𝒁 where

𝑓 𝑥 = 2𝑥 + 3

𝑔 𝑥 = 3𝑥 + 2

• Then
𝑓 ∘ 𝑔 = 𝑓 𝑔 𝑥

= 2 𝑔 𝑥 + 3

= 2 3𝑥 + 2 + 3

= 6𝑥 + 4 + 3

= 6𝑥 + 7
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• Another example continued

• However

𝑔 ∘ 𝑓 = 𝑔 𝑓 𝑥

= 3 𝑓 𝑥 + 2

= 3 2𝑥 + 3 + 2

= 6𝑥 + 9 + 2

= 6𝑥 + 11
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• Another example continued

• However

𝑔 ∘ 𝑓 = 𝑔 𝑓 𝑥

= 3 𝑓 𝑥 + 2

= 3 2𝑥 + 3 + 2

= 6𝑥 + 9 + 2

= 6𝑥 + 11
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• Another example continued

• However

𝑔 ∘ 𝑓 = 𝑔 𝑓 𝑥

= 3 𝑓 𝑥 + 2

= 3 2𝑥 + 3 + 2

= 6𝑥 + 9 + 2

= 6𝑥 + 11
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• Another example continued

• However

𝑔 ∘ 𝑓 = 𝑔 𝑓 𝑥

= 3 𝑓 𝑥 + 2

= 3 2𝑥 + 3 + 2

= 6𝑥 + 9 + 2

= 6𝑥 + 11
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• Another example continued

• However

𝑔 ∘ 𝑓 = 𝑔 𝑓 𝑥

= 3 𝑓 𝑥 + 2

= 3 2𝑥 + 3 + 2

= 6𝑥 + 9 + 2

= 6𝑥 + 11
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are invertible

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦
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• Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵 are one-to-one correspondences 
and thus are each invertible

• Thus 𝑓 ∘ 𝑔 −1(𝑦) = 𝑔−1 ∘ 𝑓−1  (𝑦)

𝑓 ∘ 𝑔 −1 𝑦 = 𝑥  where 𝑓 ∘ 𝑔 (𝑥) = 𝑦

𝑓(𝑔 𝑥 ) = 𝑦

𝑓−1 𝑓 𝑔(𝑥) = 𝑓−1 𝑦

𝑔 𝑥 = 𝑓−1 𝑦

𝑔−1 𝑔 𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 𝑓−1 𝑦

𝑥 = 𝑔−1 ∘ 𝑓−1 𝑦



Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

No, 𝑓 does not have to be one-to-one
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Example 1

𝐴 𝐵 𝐶

𝑔 𝑓



Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

Yes, 𝑔 must be one-to-one. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is one-to-one
2. Assume 𝑔 is not one-to-one
3. There are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 ≠ 𝑏 and 𝑔(𝑎)  =  𝑔(𝑏)
4.  𝑓(𝑔(𝑎))  =  𝑓(𝑔(𝑏))
5.  𝑓 ∘ 𝑔(𝑎) = 𝑓 ∘ 𝑔(𝑏)
6.  𝑓 ∘ 𝑔 is one-to-one which contradicts 𝑓 ∘ 𝑔 being one-to-one
7.  𝑔 is one-to-one
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Example 1



Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

Yes, 𝑔 must be one-to-one. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is one-to-one
2. Assume 𝑔 is not one-to-one
3. There are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 ≠ 𝑏 and 𝑔(𝑎)  =  𝑔(𝑏)
4.  𝑓(𝑔(𝑎))  =  𝑓(𝑔(𝑏))
5.  𝑓 ∘ 𝑔(𝑎) = 𝑓 ∘ 𝑔(𝑏)
6.  𝑓 ∘ 𝑔 is one-to-one which contradicts 𝑓 ∘ 𝑔 being one-to-one
7.  𝑔 is one-to-one
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

Yes, 𝑔 must be one-to-one. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is one-to-one
2. Assume 𝑔 is not one-to-one
3. There are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴 such that 𝑎 ≠ 𝑏 and 𝑔(𝑎)  =  𝑔(𝑏)
4.  𝑓(𝑔(𝑎))  =  𝑓(𝑔(𝑏))
5.  𝑓 ∘ 𝑔(𝑎) = 𝑓 ∘ 𝑔(𝑏)
6.  𝑓 ∘ 𝑔 is one-to-one which contradicts 𝑓 ∘ 𝑔 being one-to-one
7.  𝑔 is one-to-one
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

Yes, 𝑔 must be one-to-one. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is one-to-one
2. Assume 𝑔 is not one-to-one
3. There are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 ≠ 𝑏 and 𝑔(𝑎)  =  𝑔(𝑏)
4.  𝑓(𝑔(𝑎))  =  𝑓(𝑔(𝑏))
5.  𝑓 ∘ 𝑔(𝑎) = 𝑓 ∘ 𝑔(𝑏)
6.  𝑓 ∘ 𝑔 is one-to-one which contradicts 𝑓 ∘ 𝑔 being one-to-one
7.  𝑔 is one-to-one
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

Yes, 𝑔 must be one-to-one. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is one-to-one
2. Assume 𝑔 is not one-to-one
3. There are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 ≠ 𝑏 and 𝑔(𝑎)  =  𝑔(𝑏)
4.  𝑓(𝑔(𝑎))  =  𝑓(𝑔(𝑏))
5.  𝑓 ∘ 𝑔(𝑎) = 𝑓 ∘ 𝑔(𝑏)
6.  𝑓 ∘ 𝑔 is one-to-one which contradicts 𝑓 ∘ 𝑔 being one-to-one
7.  𝑔 is one-to-one
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

Yes, 𝑔 must be one-to-one. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is one-to-one
2. Assume 𝑔 is not one-to-one
3. There are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 ≠ 𝑏 and 𝑔(𝑎)  =  𝑔(𝑏)
4.  𝑓(𝑔(𝑎))  =  𝑓(𝑔(𝑏))
5.  𝑓 ∘ 𝑔(𝑎) = 𝑓 ∘ 𝑔(𝑏)
6.  𝑓 ∘ 𝑔 is not one-to-one which contradicts 𝑓 ∘ 𝑔 being one-to-one
7.  𝑔 is one-to-one
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is one-to-one, must be 𝑓 one-to-one? Must 𝑔 be one-to-one?

Yes, 𝑔 must be one-to-one. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is one-to-one
2. Assume 𝑔 is not one-to-one
3. There are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 ≠ 𝑏 and 𝑔(𝑎)  =  𝑔(𝑏)
4.  𝑓(𝑔(𝑎))  =  𝑓(𝑔(𝑏))
5.  𝑓 ∘ 𝑔(𝑎) = 𝑓 ∘ 𝑔(𝑏)
6.  𝑓 ∘ 𝑔 is not one-to-one which contradicts 𝑓 ∘ 𝑔 being one-to-one
7.  𝑔 is one-to-one
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is onto, must be 𝑓 onto? Must 𝑔 be onto?
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is onto, must be 𝑓 onto? Must 𝑔 be onto?

Yes, 𝑓 must be onto. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is onto
2. Assume 𝑓 is not onto
3. There is a 𝑐 ∈ 𝐶 such that there is no 𝑏 ∈ 𝐵 such that 𝑓(𝑏) = 𝑐
4. Then there is no 𝑎 ∈ 𝐴 such that 𝑓(𝑔(𝑎)) = 𝑐
5.  𝑓 ∘ 𝑔 is not onto which contradicts the assumption that it is onto
6.  𝑓 is onto
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is onto, must be 𝑓 onto? Must 𝑔 be onto?

Yes, 𝑓 must be onto. Proof by contradiction:

1. Assume 𝑓 ∘ 𝑔 is onto
2. Assume 𝑓 is not onto
3. There is a 𝑐 ∈ 𝐶 such that there is no 𝑏 ∈ 𝐵 such that 𝑓(𝑏) = 𝑐
4. Then there is no 𝑎 ∈ 𝐴 such that 𝑓(𝑔(𝑎)) = 𝑐
5.  𝑓 ∘ 𝑔 is not onto which contradicts the assumption that it is onto
6.  𝑓 is onto
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Assume 𝑓: 𝐵 → 𝐶 and 𝑔: 𝐴 → 𝐵

If 𝑓 ∘ 𝑔 is onto, must be 𝑓 onto? Must 𝑔 be onto?

No, 𝑔 does not have to be onto. 
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