Section 6.1 Introduction to Binary Relations

Review: Cartesian Product (Section 3.6)

• The cartesian product of two sets A and B, A × B, is the set containing all of the ways that a member of A can be paired with a member of B.

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

• Note that (*a*, *b*) is an ordered pair (2-tuple)

- Let A and B be sets (possibly the same set). A <u>binary relation</u> from A to B is a subset of $A \times B$
- If R is a binary relation, then the following are synonyms for $(a, b) \in \mathbb{R}$
 - aRb
 - R(a,b)
 - "*a* is related to *b* by *R*"

• Example 1: Let A be a set of students and B be a set of courses. Let $R = \{(a, b) | a \in A, b \in B, and student a is enrolled in course b\}$

If students Jason and Deborah are both enrolled in CS 2233, then

- (Jason, CS 2233) $\in R$
- (Deborah, CS 2233) $\in R$

- Example 2: Let *A* be the set of cities in the USA and *B* be the set of states in the USA. Let *R* = {(*a*, *b*)| city *a* is in state *b*}
 - (San Antonio, Texas) $\in R$
 - (Boulder, Colorado) $\in R$

- Example 3: Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Let R be the following relation from A to $B: R = \{(0, a), (0, b), (1, a), (2, b)\}$
 - *R* can be displayed graphically or with a table

Relations on a Set

- A <u>relation on a set</u> A is a relation from A to A
 - A relation on a set A is a subset of $A \times A$
 - The set *A* is the <u>domain</u> of the relation

Relations on a Set

• Example 4: Let $A = \{1, 2, 3, 4\}$ and R be the relation on A where $(a, b) \in R$ if and only if a evenly divides b, then:

 $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Relations on a Set

- Example 6: How many relations are there on a set with *n* elements?
 - Each subset of $A \times A$ is a relation on A
 - $A \times A$ has n^2 elements
 - $A \times A$ has 2^{n^2} subsets

• The set $\{1, 2, 3\}$ has $2^{3^2} = 2^9 = 512$ different relations