Section 6.3 Directed Graphs, Paths and Cycles

1

Directed Graphs

- A directed graph $G = (V, E)$ consists of:
	- V , a non-empty set of vertices (or nodes)
	- \bullet E, a set of directed edges,
		- $E \subseteq V \times V$
		- A directed edge $(u, v) \in E$ connects a tail vertex (or initial vertex) u to a head vertex (or terminal) v .
		- The vertices connected by an edge are called its endpoints

Directed Graph Example

- Example: Let $G = (V, E)$ where:
	- $V = \{San Francisco, Los Angeles, Denver, Chicago, Detroit, Washington, New York\}$
	- $E = \{(\textsf{San Francisco}, \textsf{Los Angeles}), (\textsf{San Francisco}, \textsf{Denver}), (\textsf{Los Angeles}, \textsf{Red})\}$ New York), (Detroit, New York)} Denver), (Denver, Chicago), (Chicago, Detroit), (Chicago, Washington), (Chicago,

Directed Graph Example

- Example: Let $G = (V, E)$ where:
	- $V = \{San Francisco, Los Angeles, Denver, Chicago, Detroit, Washington, New York\}$
	- $E = \{(\textsf{San Francisco}, \textsf{Los Angeles}), (\textsf{San Francisco}, \textsf{Denver}), (\textsf{Los Angeles}, \textsf{Red})\}$ New York), (Detroit, New York)} Denver), (Denver, Chicago), (Chicago, Detroit), (Chicago, Washington), (Chicago,

In-degree and Out-degree

- Let $G = (V, E)$ be a directed graph
	- The in-degree of a vertex $v \in V$ is the number of edges that have ν as a terminal vertex
	- in−degree $(v) = |((u, v) | (u, v) \in E)|$
	- The out-degree of a vertex $v \in V$ is the number of edges that have ν as an initial vertex
	- out–degree $(v) = |(v, w) | (v, w) \in E|$

In-degree and Out-degree

• Example: What are the in-degrees and out-degrees of each vertex in the following graph?

- $in-degree(a) = 2$ out−degree(a) = 4
- $in-degree(b) = 2$ out $-degree(b) = 1$
- $in-degree(c) = 3$ out-degree $(c) = 2$
- $in-degree(d) = 2$ out-degree(*d*) = 2
- $in-degree(e) = 3$ out-degree $(e) = 3$
- $in-degree(f) = 0$ out-degree(f) = 0
-
-

• A walk in a directed graph $G = (V, E)$ from vertex $v_0 \in V$ to vertex $v_k \in V$ is a sequence of alternating vertices and edges beginning with v_0 and ending with v_k :

$$
(v_0,(v_0,v_1),v_1(v_1,v_2)v_2,\ldots v_k)
$$

Where each edge (v_i,v_{i+1}) is flanked by vertices v_i and v_{i+1}

- The length of a walk is the number of edges in the walk.
- An open walk is a walk that starts and ends at different vertices
- A closed walk is a walk that starts and ends at the same vertex

• Example: In the following directed graph

- $(a, (a, c), c, (c, b), b, (b, d), d)$ is an open walk of length 3
- $(a, (a, b), b, (b, d), d, (d, e), e, (e, a), a)$ is a closed walk of length 4

• Since each edge in a walk is determined by its flanking vertices, a walk can be abbreviated by its sequence of vertices.

$$
(v_0,(v_0,v_1),v_1,(v_1,v_2),v_2,\ldots v_k)
$$

 $(v_0, v_1, v_2, ... v_k)$

Trails and Paths

- A trail is a walk in which no edge occurs more than once
- A path is a walk in which no vertex occurs more than once

Trail and Path Examples

- A trail is a walk in which no edge occurs more than once
- A path is a walk in which no vertex occurs more than once

 (a, e, d, e) is a trail (but not a path) • (a, b, d, c) is a path

Circuits and Cycles

- A circuit is a closed trail
- A cycle is a circuit of length at least 1 in which no vertex occurs more than once except the first and last vertices

- (a, e, d, e, a) is a circuit (but not a cycle)
- (a, c, b, d, e, a) is a cycle

Neighbors

• Vertex v is an out-neighbor of vertex u in a directed graph if the graph has an edge (u, v)

• Vertex d has out-neighbors c and e

Paths

• Example: In the following graph, there is a path from vertex c to vertex $b: c, a, b$. However, there is no path from vertex b to vertex c

Paths

• Example: In the following graph, there is a path from vertex c to vertex b: c, a, b. However, there is no path from vertex b to vertex c

Repeatedly find out-neighbors starting with ${c}$ until: 1) the neighbors include b, or 2) the neighbors do not change

 $Neighbors({c}) = {a, c, e}$ $Neighbors({a, c, e}) = {a, b, c, d, e}$

Paths

• Example: In the following graph, there is a path from vertex c to vertex b: c, a, b. However, there is no path from vertex b to vertex c

Repeatedly find out-neighbors starting with ${b}$ until: 1) the neighbors include c, or 2) the neighbors do not change

> $Neighbors({b}) = {b, d}$ $Neighbors({b, d}) = {b, d}$