
Section 7.2
Asymptotic Growth of Functions
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Notation

• 𝒁+ denotes the set of positive integers

•  𝒁+ = 1, 2, 3, …

• 𝑹≥ denotes the set of real  numbers greater than or equal to 0

• 𝑹≥ = 𝑛 𝑛 ∈ 𝑹 and 𝑛 ≥ 0
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Big-𝒪 Notation

• Let 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥

• 𝑓: 𝒁+ → 𝑹≥

• g: 𝒁+ → 𝑹≥

• 𝑓(𝑛) is 𝒪 𝑔 𝑛   if there are positive real constants 𝑐 and 𝑛0 such that 

𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)

whenever 𝑛 ≥ 𝑛0 

Such 𝑐 and 𝑛0 are called witnesses to the claim that 𝑓(𝑛) is 𝒪 𝑔 𝑛
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Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• Example: Show that 7𝑛2 is 𝒪 𝑛3

• Thus 7𝑛2 is 𝒪 𝑛3  with witnesses 𝑐 = 1 and 𝑛0 = 7
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7𝑛2 ≤ 𝑛 ⋅ 𝑛2 when 𝑛 ≥ 7

7𝑛2 ≤ 1 ⋅ 𝑛3 when 𝑛 ≥ 7
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Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑓 𝑛 = 𝑛2 + 2𝑛 + 1 is 𝒪 𝑛2

• Note that:

• Thus 𝑛2 + 2𝑛 + 1 is 𝒪 𝑛2  with witnesses 𝑐 = 3 and 𝑛0 = 2
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2𝑛 ≤ 𝑛2 when  𝑛 ≥ 2

1 ≤ 𝑛2 when  𝑛 ≥ 1

𝑛2 + 2𝑛 + 1 ≤ 3𝑛2 when 𝑛 ≥ max 2, 1 = 2
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Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• Still another example: Show that 𝑓 𝑛 = 1 + 2 + ⋯ 𝑛 is 𝒪 𝑛2

𝑓 𝑛 = 1 + 2 + ⋯ 𝑛 ≤ 𝑛 + 𝑛 + ⋯ + 𝑛 = 𝑛2

1 + 2 + ⋯ 𝑛 is 𝒪 𝑛2  with witnesses 𝑐 = 1 and 𝑛0 = 1
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Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• And another example: Show that 𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 ≤ 𝑛 ⋅ 𝑛 ⋅ ⋯ ⋅ 𝑛 = 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛  with witnesses 𝑐 = 1 and 𝑛0 = 1

25

𝑛 times



Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• And another example: Show that 𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 ≤ 𝑛 ⋅ 𝑛 ⋅ ⋯ ⋅ 𝑛 = 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛  with witnesses 𝑐 = 1 and 𝑛0 = 1

26

𝑛 times



Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• And another example: Show that 𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 ≤ 𝑛 ⋅ 𝑛 ⋅ ⋯ ⋅ 𝑛 = 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛  with witnesses 𝑐 = 1 and 𝑛0 = 1

27

𝑛 times



Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• And another example: Show that 𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 ≤ 𝑛 ⋅ 𝑛 ⋅ ⋯ ⋅ 𝑛 = 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛  with witnesses 𝑐 = 1 and 𝑛0 = 1

28

𝑛 times



Showing that 𝑓(𝑛) is 𝒪(𝑔 𝑛 )

• And another example: Show that 𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 ≤ 𝑛 ⋅ 𝑛 ⋅ ⋯ ⋅ 𝑛 = 𝑛𝑛

𝑓 𝑛 = 1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛 is 𝒪 𝑛𝑛  with witnesses 𝑐 = 1 and 𝑛0 = 1

29

𝑛 times



Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• To show that 𝑓(𝑛) is not 𝒪(𝑔 𝑛 ), you must show that for any 𝑐 and 
𝑛0, it is not the case that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Example: Show that 𝑛2 is not 𝒪(𝑛)

• Proof: By contradiction

1. Assume that 𝑛2 is 𝒪(𝑛) with witnesses 𝑐 and 𝑛0

2.  𝑛2 ≤ 𝑐 ⋅ 𝑛    when 𝑛 ≥ 𝑛0 

3.  𝑛2 ≤ 𝑐 ⋅ 𝑛    when 𝑛 > 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 

4.  𝑛 ≤ 𝑐            when 𝑛 > 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 

5.  𝑛 ≤ 𝑐 and 𝑛 > 𝑐 is a contradiction

6.  𝑛2 is not 𝒪(𝑛) 
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2.  𝑛2 ≤ 𝑐 ⋅ 𝑛    for all 𝑛 when 𝑛 ≥ 𝑛0 

3.  𝑛2 ≤ 𝑐 ⋅ 𝑛    when 𝑛 > 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 
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• Proof: By contradiction
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3.  𝑛2 ≤ 𝑐 ⋅ 𝑛    for all 𝑛 when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 

4.  𝑛 ≤ 𝑐            for all 𝑛 when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 

5.  𝑛 ≤ 𝑐 when 𝑛 > 𝑐 is a contradiction
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1. Assume that 𝑛2 is 𝒪(𝑛) with witnesses 𝑐 and 𝑛0

2.  𝑛2 ≤ 𝑐 ⋅ 𝑛    for all 𝑛 when 𝑛 ≥ 𝑛0 

3.  𝑛2 ≤ 𝑐 ⋅ 𝑛    for all 𝑛 when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 
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5.  𝑛 ≤ 𝑐 when 𝑛 > 𝑐 is a contradiction

6.  𝑛2 is not 𝒪(𝑛) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑛3 is not 𝒪(7𝑛2)

• Proof: By contradiction

1. Assume that 𝑛3 is 𝒪 7𝑛2  with witnesses 𝑐 and 𝑛0

2.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 

3.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 and 𝑛 > 𝑐 ⋅ 7

4.  𝑛 ≤ 𝑐 ⋅ 7          when 𝑛 ≥ 𝑛0 and 𝑛 > 𝑐 ⋅ 7

5.  𝑛 ≤ 𝑐 ⋅ 7 and 𝑛 > 𝑐 ⋅ 7 is a contradiction

6.  𝑛3 is not 𝒪(7𝑛2) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑛3 is not 𝒪(7𝑛2)

• Proof: By contradiction

1. Assume that 𝑛3 is 𝒪 7𝑛2  with witnesses 𝑐 and 𝑛0

2.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 

3.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 and 𝑛 > 𝑐 ⋅ 7

4.  𝑛 ≤ 𝑐 ⋅ 7          when 𝑛 ≥ 𝑛0 and 𝑛 > 𝑐 ⋅ 7

5.  𝑛 ≤ 𝑐 ⋅ 7 and 𝑛 > 𝑐 ⋅ 7 is a contradiction

6.  𝑛3 is not 𝒪(7𝑛2) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑛3 is not 𝒪(7𝑛2)

• Proof: By contradiction

1. Assume that 𝑛3 is 𝒪 7𝑛2  with witnesses 𝑐 and 𝑛0

2.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 

3.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 and 𝑛 > 𝑐 ⋅ 7

4.  𝑛 ≤ 𝑐 ⋅ 7          when 𝑛 ≥ 𝑛0 and 𝑛 > 𝑐 ⋅ 7

5.  𝑛 ≤ 𝑐 ⋅ 7 and 𝑛 > 𝑐 ⋅ 7 is a contradiction

6.  𝑛3 is not 𝒪(7𝑛2) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑛3 is not 𝒪(7𝑛2)

• Proof: By contradiction

1. Assume that 𝑛3 is 𝒪 7𝑛2  with witnesses 𝑐 and 𝑛0

2.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 

3.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 ⋅ 7

4.  𝑛 ≤ 𝑐 ⋅ 7          when 𝑛 ≥ 𝑛0 and 𝑛 > 𝑐 ⋅ 7

5.  𝑛 ≤ 𝑐 ⋅ 7 and 𝑛 > 𝑐 ⋅ 7 is a contradiction

6.  𝑛3 is not 𝒪(7𝑛2) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑛3 is not 𝒪(7𝑛2)

• Proof: By contradiction

1. Assume that 𝑛3 is 𝒪 7𝑛2  with witnesses 𝑐 and 𝑛0

2.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 

3.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 ⋅ 7

4.  𝑛 ≤ 𝑐 ⋅ 7          when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 ⋅ 7

5.  𝑛 ≤ 𝑐 ⋅ 7 and 𝑛 > 𝑐 ⋅ 7 is a contradiction

6.  𝑛3 is not 𝒪(7𝑛2) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑛3 is not 𝒪(7𝑛2)

• Proof: By contradiction

1. Assume that 𝑛3 is 𝒪 7𝑛2  with witnesses 𝑐 and 𝑛0

2.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 

3.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 ⋅ 7

4.  𝑛 ≤ 𝑐 ⋅ 7          when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 ⋅ 7

5.  𝑛 ≤ 𝑐 ⋅ 7 when 𝑛 > 𝑐 ⋅ 7 is a contradiction

6.  𝑛3 is not 𝒪(7𝑛2) 
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Showing that 𝑓(𝑛) is Not 𝒪(𝑔 𝑛 )

• Another example: Show that 𝑛3 is not 𝒪(7𝑛2)

• Proof: By contradiction

1. Assume that 𝑛3 is 𝒪 7𝑛2  with witnesses 𝑐 and 𝑛0

2.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0 

3.  𝑛3 ≤ 𝑐 ⋅ 7𝑛2   when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 ⋅ 7

4.  𝑛 ≤ 𝑐 ⋅ 7          when 𝑛 ≥ 𝑛0, 𝑛 > 0, and 𝑛 > 𝑐 ⋅ 7

5.  𝑛 ≤ 𝑐 ⋅ 7 when 𝑛 > 𝑐 ⋅ 7 is a contradiction

6.  𝑛3 is not 𝒪(7𝑛2) 
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Big-Ω Notation

• Let 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥

• 𝑓: 𝒁+ → 𝑹≥

• g: 𝒁+ → 𝑹≥ 

• 𝑓(𝑛) is Ω 𝑔 𝑛   if there are positive real constants 𝑐 and 𝑛0 such that 

𝑓(𝑛) ≥ 𝑐 ⋅ 𝑔(𝑛)

whenever 𝑛 ≥ 𝑛0 

Such 𝑐 and 𝑛0 are called witnesses to the claim that 𝑓(𝑛) is Ω 𝑔 𝑛
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Big-𝒪 and Big-Ω

If 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥, then

𝑓 is 𝒪 𝑔  if and only if 𝑔 is Ω(𝑓)
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Big-𝒪 and Big-Ω

If 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥, then

𝑓 is 𝒪 𝑔  if and only if 𝑔 is Ω(𝑓)

47

𝑓 is 𝒪 𝑔  iff there are positive real 𝑐 and 𝑛0 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 
1

𝑐
⋅ 𝑓(𝑛) ≤ 𝑔(𝑛)  when 𝑛 ≤ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 𝑔(𝑛) ≥
1

𝑐
⋅ 𝑓(𝑛)when 𝑛 ≤ 𝑛0

iff there are positive real 𝑐 and 𝑛0 such that 𝑔(𝑛) ≥ 𝑐 ⋅ 𝑓(𝑛)  when 𝑛 ≤ 𝑛0

iff 𝑔 is Ω(𝑓)



Big-𝒪 and Big-Ω

If 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥, then

𝑓 is 𝒪 𝑔  if and only if 𝑔 is Ω(𝑓)

48

𝑓 is 𝒪 𝑔  iff there are positive real 𝑐 and 𝑛0 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 
1

𝑐
⋅ 𝑓(𝑛) ≤ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 𝑔(𝑛) ≥
1

𝑐
⋅ 𝑓(𝑛)when 𝑛 ≤ 𝑛0

iff there are positive real 𝑐 and 𝑛0 such that 𝑔(𝑛) ≥ 𝑐 ⋅ 𝑓(𝑛)  when 𝑛 ≤ 𝑛0

iff 𝑔 is Ω(𝑓)



Big-𝒪 and Big-Ω

If 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥, then

𝑓 is 𝒪 𝑔  if and only if 𝑔 is Ω(𝑓)

49

𝑓 is 𝒪 𝑔  iff there are positive real 𝑐 and 𝑛0 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 
1

𝑐
⋅ 𝑓(𝑛) ≤ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 𝑔(𝑛) ≥
1

𝑐
⋅ 𝑓(𝑛)when 𝑛 ≥ 𝑛0

iff there are positive real 𝑐 and 𝑛0 such that 𝑔(𝑛) ≥ 𝑐 ⋅ 𝑓(𝑛)  when 𝑛 ≤ 𝑛0

iff 𝑔 is Ω(𝑓)



Big-𝒪 and Big-Ω

If 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥, then

𝑓 is 𝒪 𝑔  if and only if 𝑔 is Ω(𝑓)

50

𝑓 is 𝒪 𝑔  iff there are positive real 𝑐 and 𝑛0 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 
1

𝑐
⋅ 𝑓(𝑛) ≤ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 𝑔(𝑛) ≥
1

𝑐
⋅ 𝑓(𝑛)when 𝑛 ≥ 𝑛0

iff there are positive real 𝑐 and 𝑛0 such that 𝑔(𝑛) ≥ 𝑐 ⋅ 𝑓(𝑛)  when 𝑛 ≥ 𝑛0

iff 𝑔 is Ω(𝑓)



Big-𝒪 and Big-Ω

If 𝑓 and 𝑔 be functions from the set 𝒁+ to the set 𝑹≥, then

𝑓 is 𝒪 𝑔  if and only if 𝑔 is Ω(𝑓)
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𝑓 is 𝒪 𝑔  iff there are positive real 𝑐 and 𝑛0 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 
1

𝑐
⋅ 𝑓(𝑛) ≤ 𝑔(𝑛)  when 𝑛 ≥ 𝑛0

iff there are positive real 1/𝑐 and 𝑛0 such that 𝑔(𝑛) ≥
1

𝑐
⋅ 𝑓(𝑛)when 𝑛 ≥ 𝑛0

iff there are positive real 𝑐 and 𝑛0 such that 𝑔(𝑛) ≥ 𝑐 ⋅ 𝑓(𝑛)  when 𝑛 ≥ 𝑛0

iff 𝑔 is Ω(𝑓)



Big-Ω Notation

• Example: 𝑓 𝑛 = 8𝑛3 + 5𝑛2 + 7 is Ω(𝑔) where 𝑔 𝑛 = 𝑛3

• Proof:

8𝑛3 + 5𝑛2 + 7 ≥ 𝑛3 whenever 𝑛 > 0

So, 8𝑛3 + 5𝑛2 + 7 ≥ 𝑛3 is Ω(𝑔) with witnesses 𝑐 = 1 and  𝑛0 = 0
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Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔 𝑛 ) where 𝑔 𝑛 =
8𝑛2
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Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:

54

𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12

1

3
𝑛2 ≥ 4𝑛 when 𝑛 ≥ 12

𝑛2 ≥ 3 ⋅ 2 when 𝑛 ≥ 6

1

3
𝑛2 ≥ 2 when 𝑛 ≥ 6

1

3
𝑛2+

1

3
𝑛2+

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 ≥
1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 − 4𝑛 − 2 ≥
1

3 ⋅ 8
8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
1

24
 and 𝑛0 = 12



Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12

1

3
𝑛2 ≥ 4𝑛 when 𝑛 ≥ 12
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3
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3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 ≥
1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 − 4𝑛 − 2 ≥
1

3 ⋅ 8
8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
1

24
 and 𝑛0 = 12



Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12

1

3
𝑛2 ≥ 4𝑛 when 𝑛 ≥ 12

𝑛2 ≥ 3 ⋅ 2 when 𝑛 ≥ 6
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3
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𝑛2 ≥
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8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 − 4𝑛 − 2 ≥
1

3 ⋅ 8
8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
1

24
 and 𝑛0 = 12



Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12

1

3
𝑛2 ≥ 4𝑛 when 𝑛 ≥ 12
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8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
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Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12
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3
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Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛
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Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛
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3
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3 ⋅ 8
8𝑛2 for all 𝑛
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1

3 ⋅ 8
8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
1

24
 and 𝑛0 = 12



Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12

1

3
𝑛2 ≥ 4𝑛 when 𝑛 ≥ 12

𝑛2 ≥ 3 ⋅ 2 when 𝑛 ≥ 6

1

3
𝑛2 ≥ 2 when 𝑛 ≥ 6

1

3
𝑛2+

1

3
𝑛2+

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 ≥
1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 − 4𝑛 − 2 ≥
1

3 ⋅ 8
8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
1

24
 and 𝑛0 = 12



Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12

1

3
𝑛2 ≥ 4𝑛 when 𝑛 ≥ 12

𝑛2 ≥ 3 ⋅ 2 when 𝑛 ≥ 6

1

3
𝑛2 ≥ 2 when 𝑛 ≥ 6

1

3
𝑛2+

1

3
𝑛2+

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 ≥
1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 − 4𝑛 − 2 ≥
1

3 ⋅ 8
8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
1

24
 and 𝑛0 = 12



Big-Ω Notation

• Another example: 𝑓 𝑛 = 𝑛2 − 4𝑛 − 2 is Ω(𝑔) where 𝑔 𝑛 = 8𝑛2

• Proof:
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𝑛2 ≥
1

8
8𝑛2 for all 𝑛

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 for all 𝑛

𝑛2 ≥ 3 ⋅ 4𝑛 when 𝑛 ≥ 12

1

3
𝑛2 ≥ 4𝑛 when 𝑛 ≥ 12

𝑛2 ≥ 3 ⋅ 2 when 𝑛 ≥ 6

1

3
𝑛2 ≥ 2 when 𝑛 ≥ 6

1

3
𝑛2+

1

3
𝑛2+

1

3
𝑛2 ≥

1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 ≥
1

3 ⋅ 8
8𝑛2 + 4𝑛 + 2 when 𝑛 ≥ 12 and when 𝑛 ≥ 6

𝑛2 − 4𝑛 − 2 ≥
1

3 ⋅ 8
8𝑛2 when 𝑛 ≥ 12

𝑛2 − 4𝑛 − 2 is Ω(8𝑛2) with 

witnesses c =
1

24
 and 𝑛0 = 12



Big-Θ Notation

• Let 𝑓 and 𝑔 be functions from either the set of integers or the set of 
real numbers to the set of real numbers

• 𝑓(𝑛) is Θ 𝑔 𝑛  if 𝑓(𝑛) is 𝒪 𝑔 𝑛  and 𝑓(𝑛) is Ω 𝑔 𝑛
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Big-Θ Notation

Theorem: If 𝑓(𝑛) is Θ 𝑔 𝑛  then 𝑔(𝑛) is Θ 𝑓 𝑛
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Big-Θ Notation

Theorem: If 𝑓(𝑛) is Θ 𝑔 𝑛  then 𝑔(𝑛) is Θ 𝑓 𝑛

Proof:

1. Assume 𝑓(𝑛) is Θ 𝑔 𝑛

2.  𝑓(𝑥) is 𝒪 𝑔 𝑥  and 𝑓(𝑥) is Ω 𝑔 𝑥

3.  𝑔(𝑥) is Ω 𝑓 𝑥  and 𝑔(𝑥) is 𝒪 𝑔 𝑥        (proved last lecture)

4.  𝑔(𝑥) is Θ 𝑓 𝑥
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Big-Θ Notation

Theorem: If 𝑓(𝑛) is Θ 𝑔 𝑛  then 𝑔(𝑛) is Θ 𝑓 𝑛

Proof:

1. Assume 𝑓(𝑛) is Θ 𝑔 𝑛

2.  𝑓(𝑛) is 𝒪 𝑔 𝑛  and 𝑓(𝑛) is Ω 𝑔 𝑛

3.  𝑔(𝑥) is Ω 𝑓 𝑥  and 𝑔(𝑥) is 𝒪 𝑔 𝑥        (proved last lecture)

4.  𝑔(𝑥) is Θ 𝑓 𝑥
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Big-Θ Notation

Theorem: If 𝑓(𝑛) is Θ 𝑔 𝑛  then 𝑔(𝑛) is Θ 𝑓 𝑛

Proof:

1. Assume 𝑓(𝑛) is Θ 𝑔 𝑛

2.  𝑓(𝑛) is 𝒪 𝑔 𝑛  and 𝑓(𝑛) is Ω 𝑔 𝑛

3.  𝑔(𝑛) is Ω 𝑓 𝑛  and 𝑔(𝑛) is 𝒪 𝑔 𝑛        (proved last lecture)

4.  𝑔(𝑥) is Θ 𝑓 𝑥
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Big-Θ Notation

Theorem: If 𝑓(𝑛) is Θ 𝑔 𝑛  then 𝑔(𝑛) is Θ 𝑓 𝑛

Proof:

1. Assume 𝑓(𝑛) is Θ 𝑔 𝑛

2.  𝑓(𝑛) is 𝒪 𝑔 𝑛  and 𝑓(𝑛) is Ω 𝑔 𝑛

3.  𝑔(𝑛) is Ω 𝑓 𝑛  and 𝑔(𝑛) is 𝒪 𝑔 𝑛        (proved last lecture)

4.  𝑔(𝑛) is Θ 𝑓 𝑛
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Big-Θ Notation

• Example: Show that 𝑓 𝑛 = 1 + 2 + ⋯ + 𝑛 is Θ(𝑛2)

• Proof: A previous example showed that 𝑓 𝑛 = 1 + 2 + ⋯ + 𝑛 is 
𝒪(𝑛2). To show that 𝑓(𝑛) is Θ(𝑛2), we just need to show that 𝑓(𝑛) is 
Ω(𝑛2) 
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Big-Θ Notation

71

𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2



Big-Θ Notation
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𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2



Big-Θ Notation
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𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2



Big-Θ Notation
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𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2



Big-Θ Notation

75

𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2



Big-Θ Notation
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𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2



Big-Θ Notation
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𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2   when 𝑛 ≥ 1



Big-Θ Notation
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𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 + 2 + ⋯ + 𝑛 − 1 + 𝑛
 +1 + 2 + ⋯ + 𝑛 − 1 + 𝑛

2 ⋅ 𝑓(𝑛) =  1 +  2 + ⋯ + 𝑛 − 1 + 𝑛
 + 𝑛 + 𝑛 − 1 + ⋯ +  2 + 1

2 ⋅ 𝑓(𝑛) = 𝑛(𝑛 + 1)

2 ⋅ 𝑓(𝑛) = 𝑛2 + 𝑛

𝑓(𝑛) =
1

2
𝑛2 +

1

2
𝑛

𝑓(𝑛) ≥
1

2
𝑛2   when 𝑛 ≥ 1

𝑓(𝑛) is Ω 𝑛2  with witnesses 𝑐 =
1

2
 and 𝑛0 = 1. 

Since 𝑓(𝑛) is also 𝒪 𝑛2 ,  𝑓(𝑛) is Θ 𝑛2



Big-Θ Notation

• Another example: Show that 3𝑛2 + 8n ⋅ log(𝑛) is Θ(𝑛2)

• Note that when 𝑛 > 0,  log 𝑛 < 𝑛 

So, 3𝑥2 + 8𝑥log(𝑥) is 𝒪(𝑥2) with witnesses 𝑐 = 11 and 𝑛0 = 1
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log 𝑛 < 𝑛 when 𝑛 ≥ 1

8n ⋅ log 𝑛 ≤ 8𝑛2 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≤ 11𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example: Show that 3𝑛2 + 8n ⋅ log(𝑛) is Θ(𝑛2)

• Note that when 𝑛 > 0,  log 𝑛 < 𝑛 

So, 3𝑥2 + 8𝑥log(𝑥) is 𝒪(𝑥2) with witnesses 𝑐 = 11 and 𝑛0 = 1
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log 𝑛 < 𝑛 when 𝑛 ≥ 1

8n ⋅ log 𝑛 ≤ 8𝑛2 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≤ 11𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example: Show that 3𝑛2 + 8n ⋅ log(𝑛) is Θ(𝑛2)

• Note that when 𝑛 > 0,  log 𝑛 < 𝑛 

So, 3𝑥2 + 8𝑥log(𝑥) is 𝒪(𝑥2) with witnesses 𝑐 = 11 and 𝑛0 = 1

81

log 𝑛 < 𝑛 when 𝑛 ≥ 1

8n ⋅ log 𝑛 ≤ 8𝑛2 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≤ 11𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example: Show that 3𝑛2 + 8n ⋅ log(𝑛) is Θ(𝑛2)

• Note that when 𝑛 > 0,  log 𝑛 < 𝑛 

So, 3𝑥2 + 8𝑥log(𝑥) is 𝒪(𝑥2) with witnesses 𝑐 = 11 and 𝑛0 = 1
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log 𝑛 < 𝑛 when 𝑛 ≥ 1

8n ⋅ log 𝑛 ≤ 8𝑛2 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≤ 11𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example: Show that 3𝑛2 + 8n ⋅ log(𝑛) is Θ(𝑛2)

• Note that when 𝑛 > 0,  log 𝑛 < 𝑛 

So, 3𝑛2 + 8n ⋅ log(𝑛) is 𝒪(𝑛2) with witnesses 𝑐 = 11 and 𝑛0 = 1
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log 𝑛 ≤ 𝑛 when 𝑛 ≥ 1

8n ⋅ log 𝑛 ≤ 8𝑛2 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≤ 11𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example continued

Now we need to show that 3𝑛2 + 8n ⋅ log(𝑛) is Ω(𝑛2)

Hence 𝑥2 + 8𝑥log(𝑥) is Ω(𝑥2) with witnesses 𝑐 = 1 and 𝑛0 = 1

Since 𝑥2 + 8𝑥log(𝑥) is also 𝒪(𝑥2), 𝑥2 + 8𝑥log(𝑥) is Θ(𝑥2) 
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log 𝑛 ≥ 0 when 𝑛 ≥ 1

8n ⋅ log 𝑛 ≥ 0 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≥ 𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example continued

Now we need to show that 3𝑛2 + 8𝑛 ⋅ log(𝑛) is Ω(𝑛2)

Hence 𝑥2 + 8𝑥log(𝑥) is Ω(𝑥2) with witnesses 𝑐 = 1 and 𝑛0 = 1

Since 𝑥2 + 8𝑥log(𝑥) is also 𝒪(𝑥2), 𝑥2 + 8𝑥log(𝑥) is Θ(𝑥2) 
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log 𝑛 ≥ 0 when 𝑛 ≥ 1

8n ⋅ log 𝑛 ≥ 0 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≥ 𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example continued

Now we need to show that 3𝑛2 + 8𝑛 ⋅ log(𝑛) is Ω(𝑛2)

Hence 𝑥2 + 8𝑥log(𝑥) is Ω(𝑥2) with witnesses 𝑐 = 1 and 𝑛0 = 1

Since 𝑥2 + 8𝑥log(𝑥) is also 𝒪(𝑥2), 𝑥2 + 8𝑥log(𝑥) is Θ(𝑥2) 
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log 𝑛 ≥ 0 when 𝑛 ≥ 1

8𝑛 ⋅ log 𝑛 ≥ 0 when 𝑛 ≥ 1

3𝑛2 + 8n ⋅ log 𝑛 ≥ 𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example continued

Now we need to show that 3𝑛2 + 8𝑛 ⋅ log(𝑛) is Ω(𝑛2)

Hence 𝑥2 + 8𝑥log(𝑥) is Ω(𝑥2) with witnesses 𝑐 = 1 and 𝑛0 = 1

Since 𝑥2 + 8𝑥log(𝑥) is also 𝒪(𝑥2), 𝑥2 + 8𝑥log(𝑥) is Θ(𝑥2) 
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log 𝑛 ≥ 0 when 𝑛 ≥ 1

8𝑛 ⋅ log 𝑛 ≥ 0 when 𝑛 ≥ 1

3𝑛2 + 8𝑛 ⋅ log 𝑛 ≥ 𝑛2 when 𝑛 ≥ 1



Big-Θ Notation

• Another example continued

Now we need to show that 3𝑛2 + 8𝑛 ⋅ log(𝑥) is Ω(𝑛2)

Hence 3𝑛2 + 8𝑛 ⋅ log(𝑛) is Ω(𝑛2) with witnesses 𝑐 = 1 and 𝑛0 = 1

Since 3𝑛2 + 8𝑛 ⋅ log(𝑛) is also 𝒪(𝑛2),  3𝑛2 + 8𝑛 ⋅ log(𝑛) is Θ(𝑛2) 
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log 𝑛 ≥ 0 when 𝑛 ≥ 1

8𝑛 ⋅ log 𝑛 ≥ 0 when 𝑛 ≥ 1

3𝑛2 + 8𝑛 ⋅ log 𝑛 ≥ 𝑛2 when 𝑛 ≥ 1



Asymptotic Growth of Polynomials

• Theorem 7.2.2

Let 𝑝(𝑛) be a polynomial of degree 𝑘:

𝑝 𝑛 = 𝑎𝑘𝑛𝑘 + 𝑎𝑘−1𝑛𝑘−1 + ⋯ + 𝑎1𝑛1 + 𝑎0

where 𝑎𝑘 > 0

Then, 𝑝 𝑛  is Θ(𝑛𝑘)
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Asymptotic Growth Logarithmic Functions of 
Different Bases

• If 𝑎 and 𝑏 constants such  𝑎 > 1 and 𝑏 > 1, then 

log𝑎(𝑛) is Θ log𝑏 𝑛

• Proof:
1.  𝑛 = 𝑎𝑙𝑜𝑔𝑎(𝑛)= 𝑏𝑙𝑜𝑔𝑏(𝑛) when 𝑛 ≥ 1

2.  log𝑎 𝑎𝑙𝑜𝑔𝑎 𝑛 = log𝑎 𝑏𝑙𝑜𝑔𝑏 𝑛     when 𝑛 ≥ 1

3.  log𝑎 𝑛 = log𝑎 𝑏 ⋅ log𝑏 𝑛   where log𝑎 𝑏  is positive and 𝑛 ≥ 1

4.  log𝑎 𝑛 = 𝑐 ⋅ log𝑏 𝑛   where 𝑐 = log𝑎 𝑏  is positive and 𝑛 ≥ 1

5.  log𝑎 𝑛 ≤ c ⋅ log𝑏 𝑛   where 𝑐 is positive and 𝑛 ≥ 1

6.  log𝑎 𝑛 ≥ c ⋅ log𝑏 𝑛   where 𝑐 is positive and 𝑛 ≥ 1

7.  log𝑎(𝑛) is Θ log𝑏 𝑛
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Growth Rates of Common Functions

• A function is a constant function if it always returns the same value

• If 𝑓(𝑛) is a constant function, then 𝑓(𝑛) is Θ(1)

• 𝑓(𝑛) is called linear if 𝑓(𝑛) is Θ(𝑛)

• 𝑓(𝑛) is called polynomial if 𝑓(𝑛) is Θ(𝑛𝑘) for a real number 𝑘 > 0

• 𝑓(𝑛) is called exponential if 𝑓(𝑛) is Θ(𝑐𝑛) for a real number 𝑐 > 1
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Common Functions in Algorithmic Complexity
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Function Name

Θ(1) Constant

Θ(log(log 𝑛 )) Log log

Θ(log(𝑛)) Logarithmic

Θ(𝑛) Linear

Θ(𝑛 ⋅ log(𝑛)) n log n

Θ 𝑛2 Quadratic

Θ 𝑛3 Cubic

Θ 𝑛𝑘  𝑘 > 3 Power

Θ 𝑐𝑛  𝑐 > 1 Exponential

Θ(𝑛!) Factorial



Rules for Asymptotic Growth of Functions
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• If 𝑓(𝑛) is 𝒪(ℎ(𝑛)) and 𝑔(𝑛) is 𝒪(ℎ(𝑛)), then 𝑓 𝑛 + 𝑔(𝑛) is 𝒪(ℎ(𝑛))

•  If 𝑓(𝑛) is Ω(ℎ(𝑛)) and 𝑔(𝑛) is Ω(ℎ(𝑛)), then 𝑓 𝑛 + 𝑔(𝑛) is Ω(ℎ(𝑛))

• If 𝑓(𝑛) is 𝒪(𝑔(𝑛)) and 𝑎 > 0, then 𝑎 ⋅ 𝑓 𝑛  is 𝒪(𝑔(𝑛))

• If 𝑓(𝑛) is Ω(𝑔(𝑛)) and 𝑎 > 0, then 𝑎 ⋅ 𝑓 𝑛  is Ω(𝑔(𝑛))

• If 𝑓(𝑛) is 𝒪(𝑔(𝑛)) and 𝑔(𝑛) is 𝒪(ℎ(𝑛)), then 𝑓 𝑛  is 𝒪(ℎ(𝑛))

• If 𝑓(𝑛) is Ω(𝑔(𝑛)) and 𝑔(𝑛) is Ω(ℎ(𝑛)), then 𝑓 𝑛  is Ω(ℎ(𝑛))
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