
Section 7.3
Analysis of Algorithms

1

Time Complexity

• The time complexity of an algorithm is a function 𝑓: 𝒁+ → 𝒁+ that
takes the size of an algorithm's input and returns the number of
atomic operations that the algorithm executes when processing an
input of that size

• An atomic operation is a basic operation such as an assignment,
arithmetic operation, comparison, or return statement.

2

Time Complexity

• Example: Summing a sequence of numbers

Input: a1, a2, a3, …, an

sum := 0

for i:= 1 to n

 sum := sum + ai

end-for

return sum

3

Time Complexity

• Example: Summing a sequence of numbers

Input: a1, a2, a3, …, an

sum := 0

for i:= 1 to n

 sum := sum + ai

end-for

return sum

4

1 operation

2 operations: increment and test

2 operations: addition and assignment

1 operation

done n times

Time Complexity

• Example: Summing a sequence of n numbers

Input: a1, a2, a3, …, an

sum := 0

for i:= 1 to n

 sum := sum + ai

end-for

return sum

5

1 operation

2 operations: increment and test

2 operations: addition and assignment

1 operation

done n times

Time complexity: 𝑓 𝑛 = 4𝑛 + 2 is 𝒪(𝑛)

Time Complexity

• Another example: Finding the minimum of a sequence of numbers

Input: a1, a2, a3, …, an

min := a1 1 operation

for i:= 2 to n 2 operations: increment and test

 if ai< min 1 operation

 min := ai 1 operation

 end-if

end-for

return min 1 operation

6

Time Complexity

• Another example: Finding the minimum of a sequence of numbers

Input: a1, a2, a3, …, an

min := a1 1 operation

for i:= 2 to n 2 operations: increment and test

 if ai< min 1 operation

 min := ai 1 operation

 end-if

end-for

return min 1 operation

7

done n-1 times

Time Complexity

• Another example: Finding the minimum of a sequence of numbers

Input: a1, a2, a3, …, an

min := a1 1 operation

for i:= 2 to n 2 operations: increment and test

 if ai< min 1 operation

 min := ai 1 operation

 end-if

end-for

return min 1 operation

8

done n-1 times

Worst case complexity: 𝑓 𝑛 = 4 𝑛 − 1 + 2 = 4𝑛 − 2 is 𝒪(𝑛)

Time Complexity

• Yet another example: Counting duplicate pairs in a sequence

Input: a1, a2, a3, …, an

count := 0 1 operation

for i:= 1 to n 2 operations: increment and test

 for j:= i+1 to n 2 operations: increment and test

 if ai = aj 1 operation

 count := count + 1 2 operations

 end-if

 end-for

end-for

return couunt 1 operation

9

Time Complexity

• Yet another example: Counting duplicate pairs in a sequence

Input: a1, a2, a3, …, an

count := 0 1 operation

for i:= 1 to n 2 operations: increment and test

 for j:= i+1 to n 2 operations: increment and test

 if ai = aj 1 operation

 count := count + 1 2 operations

 end-if

 end-for

end-for

return min 1 operation

10

1st time: n-1 times
2nd time: n-2 times
nth time: n-n times

Time Complexity

• Yet another example: Counting duplicate pairs in a sequence

Input: a1, a2, a3, …, an

count := 0 1 operation

for i:= 1 to n 2 operations: increment and test

 for j:= i+1 to n 2 operations: increment and test

 if ai = aj 1 operation

 count := count + 1 2 operations

 end-if

 end-for

end-for

return min 1 operation

11

1st time: n-1 times
2nd time: n-2 times
nth time: n-n times

Worst case time complexity: 𝑓(𝑛) = 2𝑛 + 2 + 5 𝑛 − 1 + 𝑛 − 2 + … + 2 + 1 + 0

Time Complexity

• Yet another example: Counting duplicate pairs in a sequence

Input: a1, a2, a3, …, an

count := 0 1 operation

for i:= 1 to n 2 operations: increment and test

 for j:= i+1 to n 2 operations: increment and test

 if ai = aj 1 operation

 count := count + 1 2 operations

 end-if

 end-for

end-for

return min 1 operation

12

1st time: n-1 times
2nd time: n-2 times
nth time: n-n times

Worst case time complexity: 𝑓(𝑛) = 2𝑛 + 2 + 5 𝑛 − 1 + 𝑛 − 2 + … + 2 + 1 + 0

𝑛 − 1 𝑛

2
=

1

2
𝑛2 −

1

2
𝑛

Time Complexity

• Yet another example: Counting duplicate pairs in a sequence

Input: a1, a2, a3, …, an

count := 0 1 operation

for i:= 1 to n 2 operations: increment and test

 for j:= i+1 to n 2 operations: increment and test

 if ai = aj 1 operation

 count := count + 1 2 operations

 end-if

 end-for

end-for

return min 1 operation

13

1st time: n-1 times
2nd time: n-2 times
nth time: n-n times

Worst case time complexity: 𝑓(𝑛) = 2𝑛 + 2 + 5 𝑛 − 1 + 𝑛 − 2 + … + 2 + 1 + 0 is 𝒪(𝑛2)

𝑛 − 1 𝑛

2
=

1

2
𝑛2 −

1

2
𝑛

	Slide 1: Section 7.3 Analysis of Algorithms
	Slide 2: Time Complexity
	Slide 3: Time Complexity
	Slide 4: Time Complexity
	Slide 5: Time Complexity
	Slide 6: Time Complexity
	Slide 7: Time Complexity
	Slide 8: Time Complexity
	Slide 9: Time Complexity
	Slide 10: Time Complexity
	Slide 11: Time Complexity
	Slide 12: Time Complexity
	Slide 13: Time Complexity

