
Section 8.17
Divide-and-Conquer Recurrence

Relations

1

2

A Review of Recurrence Relations for Divide-and-Conquer
Algorithms

• Recall the recurrence relations that describe the number of operations
used by some divide-and-conquer algorithms (Sections 8.13 and 8.14)

• Finding the minimum of a sequence:

 𝑇 1 = 2

𝑇 𝑛 = 2𝑇 𝑛/2 + 8

3

A Review of Recurrence Relations for Divide-and-Conquer
Algorithms

• Merge Sort:

 𝑇 1 = 2

𝑇 𝑛 = 2𝑇 𝑛/2 + Θ(𝑛)

• Note: 𝑇 𝑛 = 2𝑇 𝑛/2 + Θ(𝑛) means 𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑓(𝑛) for
some function 𝑓(𝑛) that is Θ(𝑛)

4

A Review of Recurrence Relations for Divide-and-Conquer
Algorithms

• Binary Search:

𝑇 1 = 3

𝑇 𝑛 = 𝑇 𝑛/2 + 9

5

Divide-and-Conquer Recurrence Relation

• Many recurrence relations counting the number of operations for
divide-and-conquer algorithms are of the form:

𝑇 1 = 𝑐

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + Θ 𝑛𝑑

where 𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + Θ 𝑛𝑑 means 𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛 for

some function 𝑓 𝑛 that is Θ 𝑛𝑑

Consider a recurrence relation and initial condition of the following form
where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

𝑇 1 = 𝑐

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + Θ 𝑛𝑑

1. If 𝑎/𝑏𝑑 = 1, then 𝑇(𝑛) is Θ 𝑛𝑑𝑙𝑜𝑔 𝑛

2. If 𝑎/𝑏𝑑 < 1, then 𝑇(𝑛) is Θ 𝑛𝑑

3. If 𝑎/𝑏𝑑 > 1, then 𝑇(𝑛) is Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

6

The Master Theorem

Example 1: The number of operations used by divide-and-conquer algorithm
for finding the minimum of a sequence of length n is:

𝑇 1 = 2
𝑇 𝑛 = 2𝑇 𝑛/2 + 8

Note 8 is Θ 𝑛0

𝑎 = 2, 𝑏 = 2, 𝑑 = 0

𝑎/𝑏𝑑 = 2/ 20 = 2 > 1

𝑇(𝑛) is Θ 𝑛𝑙𝑜𝑔2 2

𝑇(𝑛) is Θ 𝑛

7

Master Theorem Examples

Example 2: The number of operations used by Merge sort on a sequence of
length n is:

𝑇 1 = 2
𝑇 𝑛 = 2𝑇 𝑛/2 + Θ(𝑛)

𝑎 = 2, 𝑏 = 2, 𝑑 = 1

𝑎/𝑏𝑑 = 2/ 21 = 1

𝑇(𝑛) is Θ 𝑛 ⋅ 𝑙𝑜𝑔(𝑛)

8

Master Theorem Examples

Example 3: The number of operations used by binary search on a sequence
of length n is:

𝑇 1 = 3
𝑇 𝑛 = 𝑇 𝑛/2 + 9

𝑎 = 1, 𝑏 = 2, 𝑑 = 0

𝑎/𝑏𝑑 = 1/ 20 = 1

𝑇(𝑛) is Θ 𝑙𝑜𝑔2(𝑛)

9

Master Theorem Examples

10

Building a Recursion Tree

• Example: Consider an algorithm that uses the following number of
operations for inputs of size 𝑛:

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

Build a tree that describes the calculation of 𝑇(𝑛)

11

Building a Recursion Tree

𝑇(𝑛)

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑛5

12

Building a Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

13

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑇 𝑛/2𝑇 𝑛/2 𝑇 𝑛/2

3𝑇 𝑛/4 + (𝑛/2)53𝑇 𝑛/4 + (𝑛/2)53𝑇 𝑛/4 + (𝑛/2)5

14

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

15

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑇 𝑛/4𝑇 𝑛/4 𝑇 𝑛/4 𝑇 𝑛/4𝑇 𝑛/4 𝑇 𝑛/4 𝑇 𝑛/4𝑇 𝑛/4 𝑇 𝑛/4

16

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

⋮⋮ ⋮

17

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

⋮⋮ ⋮

⋯ 1 1 1 1 1 1 1 1 1 ⋯

18

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

30 ⋅ 𝑛/20 5

31 ⋅ 𝑛/21 5

32 ⋅ 𝑛/22 5

⋮

⋯ 1 1 1 1 1 1 1 1 1 ⋯ 3𝐿 ⋅ 𝑛/2𝐿 5

⋮ ⋮

𝐿 = 𝑙𝑜𝑔2 𝑛

19

Building a Recursion Tree

𝑛5

𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5

𝑛/2 5𝑛/2 5 𝑛/2 5

𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5 𝑛/4 5𝑛/4 5 𝑛/4 5

30 ⋅ 𝑛/20 5

31 ⋅ 𝑛/21 5

32 ⋅ 𝑛/22 5

⋮

⋯ 1 1 1 1 1 1 1 1 1 ⋯ 3𝐿 ⋅ 𝑛/2𝐿 5

⋮ ⋮

𝐿 = 𝑙𝑜𝑔2 𝑛

𝑇 𝑛 =

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

20

Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 =

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

=

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3𝑖/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖

21

Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 =

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

=

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3𝑖/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖

22

Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 =

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

=

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛 +1

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖

23

Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 =

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

=

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛 +1

𝑎/𝑏𝑑 𝑖

24

Analyzing the Recursion Tree
𝑇 1 = 1

𝑇 𝑛 = 3𝑇 𝑛/2 + 𝑛5
𝑇 𝑛 =

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛/2𝑖 5

=

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖 ⋅ 𝑛5/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛

3𝑖/25𝑖

= 𝑛5 ⋅

𝑖=0

𝑙𝑜𝑔2 𝑛

3/25 𝑖

Generalize: 𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑
𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖

25

Solving the Recursion Tree

𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑 𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖

Let 𝑟 = 𝑎/𝑏𝑑 (𝑟 is a constant determined by the form of the algorithm) and
𝑚 = 𝑙𝑜𝑔𝑏 𝑛 . There is a closed form solution for the sum of exponents:

Consider 3 cases:

1. 𝑟 = 1
2. 𝑟 > 1
3. 𝑟 < 1

26

Solving the Recursion Tree

1. 𝑎/𝑏𝑑 = 1

Hence 𝑇(𝑛) is Θ 𝑛𝑑𝑙𝑜𝑔 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖

= 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

1𝑖

= 𝑛𝑑 𝑙𝑜𝑔𝑏 𝑛 + 1

27

Solving the Recursion Tree

𝑇 1 = 1

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑛𝑑 𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑙𝑜𝑔𝑏 𝑛

𝑎/𝑏𝑑 𝑖

Let 𝑟 = 𝑎/𝑏𝑑 (𝑟 is a constant determined by the form of the algorithm) and
𝑚 = 𝑙𝑜𝑔𝑏 𝑛 . There is a closed form solution for the sum of exponents:

𝑇(𝑛) = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖 =
𝑟𝑚+1 − 1

𝑟 − 1

When 𝑟 ≠ 1

28

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟

29

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟

30

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟

31

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟

32

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑

33

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑

34

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑

35

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑

Note: since 𝑟 < 1, 𝑟𝑚+1 ≪ 1

36

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑

37

Solving the Recursion Tree

2. 𝑎/𝑏𝑑 < 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

Use the closed form solution: σ𝑖=0
𝑚 𝑟𝑖 =

𝑟𝑚+1−1

𝑟−1

Hence 𝑇(𝑛) is Θ 𝑛𝑑

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1
⋅

−1

−1

= 𝑛𝑑 ⋅
1 − 𝑟𝑚+1

1 − 𝑟 1 =
1 − 𝑟0+1

1 − 𝑟
≤

1 − 𝑟𝑚+1

1 − 𝑟
<

1 − 0

1 − 𝑟
=

1

1 − 𝑎/𝑏𝑑

38

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

39

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

40

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

41

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

42

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

43

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 0

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟

and 𝑚0 = 0

44

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟

and 𝑚0 = 0

45

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟

and 𝑚0 = 1

46

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟

and 𝑚0 = 1

47

Solving the Recursion Tree

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

𝑇 𝑛 = 𝑛𝑑 ⋅

𝑖=0

𝑚

𝑟𝑖

= 𝑛𝑑 ⋅
𝑟𝑚+1 − 1

𝑟 − 1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚+1

= 𝑛𝑑 ⋅ Θ 𝑟𝑚

= 𝑛𝑑 ⋅ Θ 𝑎/𝑏𝑑 𝑙𝑜𝑔𝑏 𝑛

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

𝑟𝑚 ≥
1

𝑟
⋅ 𝑟 ⋅ 𝑟𝑚 when 𝑚 ≥ 1

≥
1

𝑟
⋅ 𝑟𝑚+1 when 𝑚 ≥ 1

𝑟𝑚 is Ω 𝑟𝑚+1
for witnesses 𝑐 =

1

𝑟

and 𝑚0 = 1

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

48

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

49

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

50

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

51

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

52

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

53

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

54

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

55

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎

3. 𝑎/𝑏𝑑 > 1
Let 𝑟 = 𝑎/𝑏𝑑 and 𝑚 = 𝑙𝑜𝑔𝑏 𝑛

56

Solving the Recursion Tree

𝑇 𝑛 = 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 ⋅𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑏𝑙𝑜𝑔𝑏 𝑛 𝑑

= 𝑛𝑑 ⋅ Θ
𝑎𝑙𝑜𝑔𝑏 𝑛

𝑛𝑑

= Θ 𝑎𝑙𝑜𝑔𝑏 𝑛

= Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑙𝑜𝑔 𝑥𝑦 = 𝑦 ⋅ 𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔𝑏 𝑛 ⋅ 𝑙𝑜𝑔𝑏 𝑎 = 𝑙𝑜𝑔𝑏 𝑎 ⋅ 𝑙𝑜𝑔𝑏 𝑛

𝑙𝑜𝑔𝑏 𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑙𝑜𝑔𝑏 𝑛𝑙𝑜𝑔𝑏 𝑎

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎

Consider a recurrence relation and initial condition of the following form
where 𝑎, 𝑏, and 𝑑 are constants:

𝑇 1 is a constant

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + Θ 𝑛𝑑

1. If 𝑎/𝑏𝑑 = 1, then 𝑇(𝑛) is Θ 𝑛𝑑𝑙𝑜𝑔 𝑛

2. If 𝑎/𝑏𝑑 < 1, then 𝑇(𝑛) is Θ 𝑛𝑑

3. If 𝑎/𝑏𝑑 > 1, then 𝑇(𝑛) is Θ 𝑛𝑙𝑜𝑔𝑏 𝑎

57

The Master Theorem

	Slide 1: Section 8.17 Divide-and-Conquer Recurrence Relations
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

