Section 8.17 Divide-and-Conquer Recurrence Relations

A Review of Recurrence Relations for Divide-and-Conquer Algorithms

• Recall the recurrence relations that describe the number of operations used by some divide-and-conquer algorithms (Sections 8.13 and 8.14)

• Finding the minimum of a sequence:

 $T(1) = 2$ $T(n) = 2 T(n/2) + 8$

A Review of Recurrence Relations for Divide-and-Conquer Algorithms

• Merge Sort:

 $T(1) = 2$ $T(n) = 2 T(n/2) + \Theta(n)$

• Note: $T(n) = 2T(n/2) + \Theta(n)$ means $T(n) = 2T(n/2) + f(n)$ for some function $f(n)$ that is $\Theta(n)$

A Review of Recurrence Relations for Divide-and-Conquer Algorithms

• Binary Search:

 $T(1) = 3$ $T(n) = T(n/2) + 9$

Divide-and-Conquer Recurrence Relation

• Many recurrence relations counting the number of operations for divide-and-conquer algorithms are of the form:

> $T(1) = c$ $T(n) = aT(n/b) + \Theta(n^d)$

where $T(n) = aT(n/b) + \Theta(n^d)$ means $T(n) = aT(n/b) + f(n)$ for some function $f(n)$ that is $\Theta \big(n^d$

The Master Theorem

Consider a recurrence relation and initial condition of the following form where a, b, c , and d are constants:

$$
T(1) = c
$$

$$
T(n) = aT(n/b) + \Theta(n^d)
$$

1. If $a/b^d = 1$, then $T(n)$ is $\Theta\left(n^d log(n)\right)$ 2. If $a/b^d < 1$, then $T(n)$ is $\Theta \big(n^d \big)$ 3. If $a/b^d > 1$, then $T(n)$ is $\Theta \big(n^{log_b(a)} \big)$

Master Theorem Examples

Example 1: The number of operations used by divide-and-conquer algorithm for finding the minimum of a sequence of length n is:

> $T(1) = 2$ $T(n) = 2 T(n/2) + 8$

Note 8 is
$$
\Theta(n^0)
$$

 $a = 2, b = 2, d = 0$

$$
a/b^d = 2/(2^0) = 2 > 1
$$

 $T(n)$ is $\Theta \big(n^{{log_2}\left(2 \right)}$ $T(n)$ is $\Theta(n)$

Master Theorem Examples

Example 2: The number of operations used by Merge sort on a sequence of length n is:

$$
T(1) = 2
$$

$$
T(n) = 2T(n/2) + \Theta(n)
$$

$$
a=2, b=2, d=1
$$

$$
a/b^d = 2/(2^1) = 1
$$

 $T(n)$ is $\Theta(n \cdot log(n))$

Master Theorem Examples

Example 3: The number of operations used by binary search on a sequence of length n is:

> $T(1) = 3$ $T(n) = T(n/2) + 9$

$$
a = 1, b = 2, d = 0
$$

$$
a/b^d=1/(2^0)=1
$$

 $T(n)$ is $\Theta(\log_2(n))$

• Example: Consider an algorithm that uses the following number of operations for inputs of size n :

> $T(1) = 1$ $T(n) = 3 T(n/2) + n^5$

Build a tree that describes the calculation of $T(n)$

 $T(1) = 1$ $T(n) = 3T(n/2) + n^5$

 $T(n)$

 $T(1) = 1$ $T(n) = 3T(n/2) + n^5$

 $T(n/2) + T(n/2) + T(n/2) + n^5$

 n^5 $T(n/2)$ $T(n/2)$ $T(n/2)$

 $T(1) = 1$ $T(n) = 3 T(n/2) + n^5$

 n^5

 $3T(n/4) + (n/2)^5$

 $3T(n/4) + (n/2)^5$

 $3T(n/4) + (n/2)^5$ $3T(n/4) + (n/2)^5$

 $T(n) = 3T(n/2) + n^5$

 $T(1) = 1$

 $(n/2)^5$ $(n/2)^{5}$ $(n/2)^{5}$

 $n⁵$

 $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$

 $T(n) = 3T(n/2) + n^5$

 $T(1) = 1$

 $(n/2)^{5}$ $(n/2)^{5}$ $(n/2)^{5}$

 $n⁵$

 $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$

 $\ddot{\cdot}$ $\ddot{\cdot}$

 $n⁵$

 $T(n) = 3T(n/2) + n^5$

 $T(1) = 1$

 $(n/2)^{5}$ $(n/2)^5$ $(n/2)^{5}$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $\ddot{\cdot}$ $\ddot{\cdot}$ $\ddot{\cdot}$ \cdots 111111111 \cdots

 $n⁵$

 $T(n) = 3T(n/2) + n^5$

 $T(1) = 1$

 $3^0 \cdot (n/2^0)^5$

 $(n/2)^{5}$ $3^1 \cdot (n/2^1)^5$ $(n/2)^{5}$ $(n/2)^{5}$

 $3^2 \cdot (n/2^2)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$

 $\ddot{\cdot}$ $\ddot{\cdot}$ $\ddot{\cdot}$ $3^L \cdot (n/2^L)^5$ 111111111 ... \cdots

 $L = log_2(n)$

 $T(n) = 3T(n/2) + n^5$

 $(n/2)^{5}$

 $T(1) = 1$

 $3^0 \cdot (n/2^0)^5$ $n⁵$ $(n/2)^{5}$ $3^1 \cdot (n/2^1)^5$ $(n/2)^{5}$

 $3^2 \cdot (n/2^2)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$ $(n/4)^5$

> $\ddot{\cdot}$ $\ddot{\cdot}$ $\ddot{\cdot}$ $3^L \cdot (n/2^L)^5$ 111111111 ... \cdots

 $L = log_2(n)$

$$
T(n) = \sum_{i=0}^{\log_2(n)} 3^i \cdot (n/2^i)^5
$$

$$
T(n) = \sum_{i=0}^{\log_2(n)} 3^i \cdot (n/2^i)^5
$$

$$
T(n) = \sum_{i=0}^{\log_2(n)} 3^i \cdot (n/2^i)^5
$$

=
$$
\sum_{i=0}^{\log_2(n)} 3^i \cdot n^5 / 2^{5i}
$$

$$
T(n) = \sum_{i=0}^{\log_2(n)} 3^i \cdot (n/2^i)^5
$$

=
$$
\sum_{i=0}^{\log_2(n)} 3^i \cdot n^5 / 2^{5i}
$$

=
$$
n^5 \cdot \sum_{i=0}^{\log_2(n)} 3^i / 2^{5i}
$$

$$
T(n) = \sum_{i=0}^{\log_2(n)} 3^i \cdot (n/2^i)^5
$$

=
$$
\sum_{i=0}^{\log_2(n)} 3^i \cdot n^5 / 2^{5i}
$$

=
$$
n^5 \cdot \sum_{i=0}^{\log_2(n)} 3^i / 2^{5i}
$$

=
$$
n^5 \cdot \sum_{i=0}^{\log_2(n)} (3/2^5)^i
$$

 a/b^d ⁱ

 $T(1) = 1$ $T(n) = 3 T(n/2) + n^5$

$$
T(n) = \sum_{i=0}^{\log_2(n)} 3^i \cdot (n/2^i)^5
$$

=
$$
\sum_{i=0}^{\log_2(n)} 3^i \cdot n^5 / 2^{5i}
$$

=
$$
n^5 \cdot \sum_{i=0}^{\log_2(n)} 3^i / 2^{5i}
$$

=
$$
n^5 \cdot \sum_{i=0}^{\log_2(n)} (3/2^5)^i
$$

Generalize: $T(1) = 1$ $T(n) = aT(n/b) + n^d$ $T(n) = n^d \cdot \quad \sum$ $i=0$ log_b(n

$$
T(1) = 1
$$

\n
$$
T(n) = aT(n/b) + n^d
$$

\n
$$
T(n) = n^d \cdot \sum_{i=0}^{\log_b(n)} (a/b^d)^i
$$

Let $r = a/b^d$ (r is a constant determined by the form of the algorithm) and $m = log_b(n)$. There is a closed form solution for the sum of exponents:

Consider 3 cases:

1.
$$
r = 1
$$

2. $r > 1$
3. $r < 1$

1. $a/b^d = 1$ $T(n) = n^d \cdot \sum_{i=0}^{\log_b(n)} (a/b^d)^i$ $= n^d \cdot \sum_{i=0}^{\log_b(n)} 1^i$ $= n^d(log_h(n) + 1)$

Hence
$$
T(n)
$$
 is $\Theta\left(n^d \log(n)\right)$

$$
T(1) = 1
$$

\n
$$
T(n) = aT(n/b) + n^d
$$

\n
$$
T(n) = n^d \cdot \sum_{i=0}^{\log_b(n)} (a/b^d)^i
$$

Let $r = a/b^d$ (r is a constant determined by the form of the algorithm) and $m = log_b(n)$. There is a closed form solution for the sum of exponents:

$$
T(n) = n^d \cdot \sum_{i=0}^m r^i = \frac{r^{m+1} - 1}{r - 1}
$$

When $r \neq 1$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = n^d \cdot \sum_{i=0}^m r^i
$$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$
= $nd \cdot \frac{1 - r^{m+1}}{1 - r}$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$
= $nd \cdot \frac{1 - r^{m+1}}{1 - r}$ $\frac{1 - r^{m+1}}{1 - r}$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$
= $nd \cdot \frac{1 - r^{m+1}}{1 - r}$ $\frac{1 - r^{0+1}}{1 - r} \le \frac{1 - r^{m+1}}{1 - r}$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$
= $nd \cdot \frac{1 - r^{m+1}}{1 - r}$
$$
1 = \frac{1 - r^{0+1}}{1 - r} \le \frac{1 - r^{m+1}}{1 - r}
$$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = n^d \cdot \sum_{i=0}^{m} r^i
$$

= $n^d \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$
= $n^d \cdot \frac{1 - r^{m+1}}{1 - r}$
$$
1 = \frac{1 - r^{0+1}}{1 - r} \le \frac{1 - r^{m+1}}{1 - r} < \frac{1 - 0}{1 - r}
$$

35 Note: since $r < 1$, $r^{m+1} \ll 1$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = n^d \cdot \sum_{i=0}^{m} r^i
$$

= $n^d \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$
= $n^d \cdot \frac{1 - r^{m+1}}{1 - r}$
$$
1 = \frac{1 - r^{0+1}}{1 - r} \le \frac{1 - r^{m+1}}{1 - r} < \frac{1 - 0}{1 - r} = \frac{1}{1 - a/b^d}
$$

2.
$$
a/b^d < 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\nUse the closed form solution: $\sum_{i=0}^{m} r^i = \frac{r^{m+1}-1}{r-1}$

$$
T(n) = n^d \cdot \sum_{i=0}^{m} r^i
$$

= $n^d \cdot \frac{r^{m+1} - 1}{r - 1} \cdot \frac{-1}{-1}$
= $n^d \cdot \frac{1 - r^{m+1}}{1 - r}$ $\boxed{1 = \frac{1 - r^{0+1}}{1 - r} \le \frac{1 - r^{m+1}}{1 - r} < \frac{1 - 0}{1 - r} = \frac{1}{1 - a/b^d}}$
Hence $T(n)$ is $\Theta(n^d)$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = n^d \cdot \sum_{i=0}^m r^i
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

$$
= nd \cdot \frac{r^{m+1} - 1}{r - 1}
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

$$
= nd \cdot \frac{r^{m+1} - 1}{r - 1}
$$

$$
= nd \cdot \Theta(r^{m+1})
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1}$
= $nd \cdot \Theta(r^{m+1})$
= $nd \cdot \Theta(r^m)$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1}$
= $nd \cdot \Theta(r^{m+1})$
= $nd \cdot \Theta(r^m)$

$$
r^m \geq \frac{1}{r} \cdot r \cdot r^m \quad \text{when } m \geq 1
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1}$
= $nd \cdot \Theta(r^{m+1})$
= $nd \cdot \Theta(r^m)$

$$
r^{m} \geq \frac{1}{r} \cdot r \cdot r^{m} \quad \text{when } m \geq 1
$$

$$
\geq \frac{1}{r} \cdot r^{m+1} \quad \text{when } m \geq 1
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1}$
= $nd \cdot \Theta(r^{m+1})$
= $nd \cdot \Theta(r^m)$

$$
r^{m} \geq \frac{1}{r} \cdot r \cdot r^{m} \quad \text{when } m \geq 1
$$

$$
\geq \frac{1}{r} \cdot r^{m+1} \quad \text{when } m \geq 1
$$

$$
r^{m} \quad \text{is } \Omega(r^{m+1}) \quad \text{for witnesses } c = \frac{1}{r}
$$

and $m_{0} = 1$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \sum_{i=0}^{m} ri
$$

= $nd \cdot \frac{r^{m+1} - 1}{r - 1}$
= $nd \cdot \Theta(r^{m+1})$
= $nd \cdot \Theta(r^{m})$
= $nd \cdot \Theta\left((a/bd)^{log_b(n)}\right)$

$$
r^{m} \geq \frac{1}{r} \cdot r \cdot r^{m} \quad \text{when } m \geq 1
$$

$$
\geq \frac{1}{r} \cdot r^{m+1} \quad \text{when } m \geq 1
$$

$$
r^{m} \quad \text{is } \Omega(r^{m+1}) \quad \text{for witnesses } c = \frac{1}{r}
$$

and $m_{0} = 1$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = n^d \cdot \sum_{i=0}^m r^i
$$

= $n^d \cdot \frac{r^{m+1} - 1}{r - 1}$
= $n^d \cdot \Theta(r^{m+1})$
= $n^d \cdot \Theta\left((a/b^d)^{\log_b(n)}\right)$
= $n^d \cdot \Theta\left(\frac{a^{\log_b(n)}}{b^{\log_b(n) \cdot d}}\right)$

$$
r^{m} \geq \frac{1}{r} \cdot r \cdot r^{m} \quad \text{when } m \geq 1
$$

$$
\geq \frac{1}{r} \cdot r^{m+1} \quad \text{when } m \geq 1
$$

$$
r^{m} \quad \text{is } \Omega(r^{m+1}) \quad \text{for witnesses } c = \frac{1}{r}
$$

and $m_{0} = 1$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = n^d \cdot \Theta\left(\frac{a^{log_b(n)}}{b^{log_b(n) \cdot d}}\right)
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \Theta \left(\frac{a^{log_b(n)}}{b^{log_b(n) \cdot d}} \right)
$$

$$
= nd \cdot \Theta \left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d} \right)
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \Theta \left(\frac{a^{log_b(n)}}{b^{log_b(n) \cdot d}} \right)
$$

$$
= nd \cdot \Theta \left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d} \right)
$$

$$
= nd \cdot \Theta \left(\frac{a^{log_b(n)}}{n^d} \right)
$$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \Theta \left(\frac{a^{log_b(n)}}{b^{log_b(n) \cdot d}} \right)
$$

= $nd \cdot \Theta \left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d} \right)$
= $nd \cdot \Theta \left(\frac{a^{log_b(n)}}{n^d} \right)$
= $\Theta(a^{log_b(n)})$

3.
$$
a/b^d > 1
$$

Let $r = a/b^d$ and $m = log_b(n)$

$$
T(n) = nd \cdot \Theta\left(\frac{a^{log_b(n)}}{b^{log_b(n)} \cdot a}\right)
$$

= $nd \cdot \Theta\left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d}\right)$
= $nd \cdot \Theta\left(\frac{a^{log_b(n)}}{n^d}\right)$
= $\Theta(a^{log_b(n)})$
= $\Theta(n^{log_b(a)})$

3.
$$
a/b^d > 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\n
$$
T(n) = n^d \cdot \Theta\left(\frac{a^{log_b(n)}}{b^{log_b(n)}d}\right)
$$
\n
$$
= n^d \cdot \Theta\left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d}\right)
$$
\n
$$
= n^d \cdot \Theta\left(\frac{a^{log_b(n)}}{n^d}\right)
$$
\n
$$
= \Theta(a^{log_b(n)})
$$
\n
$$
= \Theta(n^{log_b(a)})
$$
\n
$$
= \Theta(n^{log_b(a)})
$$

3.
$$
a/b^d > 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\n
$$
T(n) = n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{b^{log_b(n) \cdot d}} \right)
$$
\n
$$
= n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d} \right)
$$
\n
$$
= n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{n^d} \right)
$$
\n
$$
= \Theta \left(a^{log_b(n)} \right)
$$
\n
$$
= \Theta \left(n^{log_b(n)} \right)
$$
\n
$$
= \Theta \left(n^{log_b(a)} \right)
$$
\n
$$
log_b(n) \cdot log_b(a) = log_b(a) \cdot log_b(n)
$$

3.
$$
a/b^d > 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\n
$$
T(n) = n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{b^{log_b(n) \cdot d}} \right)
$$
\n
$$
= n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d} \right)
$$
\n
$$
= n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{n^d} \right)
$$
\n
$$
= \Theta \left(a^{log_b(n)} \right)
$$
\n
$$
= \Theta \left(n^{log_b(a)} \right)
$$
\n
$$
log_b(n) \cdot log_b(a) = log_b(a) \cdot log_b(n)
$$
\n
$$
log_b(a^{log_b(n)}) = log_b \left(n^{log_b(a)} \right)
$$

3.
$$
a/b^d > 1
$$

\nLet $r = a/b^d$ and $m = log_b(n)$
\n
$$
T(n) = n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{b^{log_b(n)}d} \right)
$$
\n
$$
= n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{(b^{log_b(n)})^d} \right)
$$
\n
$$
= n^d \cdot \Theta \left(\frac{a^{log_b(n)}}{n^d} \right)
$$
\n
$$
= \Theta \left(a^{log_b(n)} \right)
$$
\n
$$
= \Theta \left(n^{log_b(n)} \right)
$$
\n
$$
= \Theta \left(n^{log_b(a)} \right)
$$
\n
$$
log_b(n) \cdot log_b(a) = log_b(a) \cdot log_b(n)
$$
\n
$$
log_b(a^{log_b(n)}) = log_b(n^{log_b(a)})
$$
\n
$$
a^{log_b(n)} = n^{log_b(a)}
$$

The Master Theorem

Consider a recurrence relation and initial condition of the following form where a , b , and d are constants:

> $T(1)$ is a constant $T(n) = aT(n/b) + \Theta(n^d)$

1. If $a/b^d = 1$, then $T(n)$ is $\Theta\left(n^d log(n)\right)$ 2. If $a/b^d < 1$, then $T(n)$ is $\Theta \big(n^d \big)$ 3. If $a/b^d > 1$, then $T(n)$ is $\Theta \big(n^{log_b(a)} \big)$