Section 8.4 Mathematical Induction

1

Principle of Mathematical Induction

- Let the domain of discourse be the positive integers
- For a predicate P, we wish to prove $\forall n P(n)$
- To do this we first prove the predicate for the smallest positive integer, $P(1)$
- Then we prove that if the predicate is true for k , $P(k)$, then it is also true for $k + 1$:

 $P(k) \rightarrow P(k + 1)$

Principle of Mathematical Induction

• If we prove both $P(1)$ and $\forall k(P(k) \rightarrow P(k + 1))$, then it must be the case that

 \bullet

 $\forall n P(n)$

Because we have $P(1)$ and we have $P(2)$ because $P(1)$ and $P(1) \rightarrow P(2)$ and we have $P(3)$ because $P(2)$ and $P(2) \rightarrow P(3)$ and we have $P(4)$ because $P(3)$ and $P(3) \rightarrow P(4)$

• Example: Prove $\forall n P(n)$ by mathematical induction on the positive integers where

$$
P(n)
$$
 is $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

1. Base case: Prove $P(1)$

$$
\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}
$$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=1}^{k} i =$ $k(k+1)$ 2 and $P(k + 1)$ is $\sum_{i=1}^{k+1} i =$ $(k+1)(k+2)$ 2

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=1}^{k} i =$ $k(k+1)$ 2 and $P(k + 1)$ is $\sum_{i=1}^{k+1} i =$ $(k+1)(k+2)$ 2 We assume this

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=1}^{k} i =$ $k(k+1)$ 2 and $P(k + 1)$ is $\sum_{i=1}^{k+1} i =$ $(k+1)(k+2)$ 2 We assume this We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=1}^{k} i =$ $k(k+1)$ 2 and $P(k + 1)$ is $\sum_{i=1}^{k+1} i =$ $(k+1)(k+2)$ 2

$$
\sum_{i=1}^{k} i = 1 + 2 + \dots + k
$$

$$
\sum_{i=1}^{k+1} i = 1 + 2 + \dots + k + (k + 1)
$$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^k$ $\frac{k}{i}$ $i = 1$ $k(k+1)$ 2

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^k$ $\frac{k}{i}$ $i = 1$ $k(k+1)$ 2 2. $\sum_{i=1}^{k}$ $_{i=1}^{k}$ i + (k + 1) = $k(k+1)$ 2 $+(k+1)$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^k$ $\frac{k}{i}$ $i = 1$ $k(k+1)$ 2 2. $\sum_{i=1}^{k}$ $_{i=1}^{k}$ i + (k + 1) = $k(k+1)$ 2 $+(k+1)$ 3. $\sum_{i=1}^{k+1}$ $_{i=1}^{k+1} i =$ $k(k+1)$ 2 $+(k+1)$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^k$ $\frac{k}{i}$ $i = 1$ $k(k+1)$ 2 2. $\sum_{i=1}^{k}$ $_{i=1}^{k}$ i + (k + 1) = $k(k+1)$ 2 $+(k+1)$ 3. $\sum_{i=1}^{k+1}$ $_{i=1}^{k+1} i =$ $k(k+1)$ 2 $+(k+1)$ 4. \rightarrow $k(k+1)$ 2 $+$ $2(k+1)$ 2

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^k$ $\frac{k}{i}$ $i = 1$ $k(k+1)$ 2 2. $\sum_{i=1}^{k}$ $_{i=1}^{k}$ i + (k + 1) = $k(k+1)$ 2 $+(k+1)$ 3. $\sum_{i=1}^{k+1}$ $_{i=1}^{k+1} i =$ $k(k+1)$ 2 $+(k+1)$ 4. \rightarrow $k(k+1)$ 2 $+$ $2(k+1)$ 2 $5.$ \rightarrow $k^2 + k$ 2 $+$ $2k + 2$ 2

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^k$ $\frac{k}{i}$ $i = 1$ $k(k+1)$ 2 2. $\sum_{i=1}^{k}$ $_{i=1}^{k}$ i + (k + 1) = $k(k+1)$ 2 $+(k+1)$ 3. $\sum_{i=1}^{k+1}$ $_{i=1}^{k+1} i =$ $k(k+1)$ 2 $+(k+1)$ 4. \rightarrow $k(k+1)$ 2 $+$ $2(k+1)$ 2 $5.$ \rightarrow $k^2 + k$ 2 $+$ $2k + 2$ 2 $6.$ \rightarrow $k^2 + 3k + 2$ 2

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^k$ $\frac{k}{i}$ $i = 1$ $k(k+1)$ 2 2. $\sum_{i=1}^{k}$ $_{i=1}^{k}$ i + (k + 1) = $k(k+1)$ 2 $+(k+1)$ 3. $\sum_{i=1}^{k+1}$ $_{i=1}^{k+1} i =$ $k(k+1)$ 2 $+(k+1)$ 4. \rightarrow $k(k+1)$ 2 $+$ $2(k+1)$ 2 $5.$ \rightarrow $k^2 + k$ 2 $+$ $2k + 2$ 2 $6.$ \rightarrow $k^2 + 3k + 2$ 2 7. = $k+1)(k+2)$ 2

• Example 2: Prove $\forall n P(n)$ by mathematical induction where $P(n)$ is "The sum of the first n odd positive integers is n^{2n}

```
P(1) is 1 = 1^2P(2) is 1 + 3 = 2^2P(3) is 1 + 3 + 5 = 3^2P(4) is 1 + 3 + 5 + 7 = 4^2
```
• Example 2: Prove $\forall n P(n)$ by mathematical induction on the positive integers where

 $P(n)$ is "The sum of the first n odd positive integers is n^{2} "

• Example 2: Prove $\forall n P(n)$ by mathematical induction on the positive integers where

 $P(n)$ is "The sum of the first n odd positive integers is n^{2n}

1. Base case: Prove $P(1)$

$$
1=1^2
$$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $1 + 3 + \cdots + (2k - 1) = k^2$ and $P(k + 1)$ is $1 + 3 + \cdots + (2k - 1) + (2k + 1) = (k + 1)^2$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $1 + 3 + \cdots + (2k - 1) = k^2$ and $P(k + 1)$ is $1 + 3 + \cdots + (2k - 1) + (2k + 1) = (k + 1)^2$ We assume this

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $1 + 3 + \cdots + (2k - 1) = k^2$ and $P(k + 1)$ is $1 + 3 + \cdots + (2k - 1) + (2k + 1) = (k + 1)^2$

We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $|1 + 3 + \cdots + (2k - 1)| = k^2$ and $P(k + 1)$ is $\boxed{1 + 3 + \cdots + (2k - 1)} + (2k + 1) = (k + 1)^2$

1. Assume
$$
1 + 3 + \cdots + (2k - 1) = k^2
$$

1. Assume
$$
1 + 3 + \dots + (2k - 1) = k^2
$$

2. $1 + 3 + \dots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$

1. Assume
$$
1 + 3 + \dots + (2k - 1) = k^2
$$

\n2. $1 + 3 + \dots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$
\n3.
$$
= (k + 1)(k + 1)
$$

1. Assume
$$
1 + 3 + \dots + (2k - 1) = k^2
$$

\n2. $1 + 3 + \dots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$
\n3.
$$
= (k + 1)(k + 1)
$$
\n4.
$$
= (k + 1)^2
$$

Induction on the Natural Numbers

- If the domain of discourse changes from the positive integers $\{1, 2, 3, \dots\}$ to the natural numbers $\{0, 1, 2, \dots\}$, then to prove $\forall n P(n)$
	- by induction, we must start with the smallest natural number. So we prove

 $P(0)$

and we still prove

 $P(k) \rightarrow P(k + 1)$

• Example 3: Prove $\forall n P(n)$ by mathematical induction on the natural numbers where

$$
P(n) \text{ is } \sum_{i=0}^{n} 2^i = 2^{n+1} - 1
$$

1. Base case: Prove $P(0)$

$$
\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2^1 - 1
$$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$ and $P(k + 1)$ is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\left|\sum_{i=0}^k 2^i = 2^{k+1} - 1\;\;\right|$ We assume this and $P(k + 1)$ is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=0}^k 2^i = 2^{k+1} - 1$ and $P(k + 1)$ is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$ We assume this We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$ and $P(k + 1)$ is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

$$
\sum_{i=0}^{k} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{k}
$$

 $\sum_{i=0}^{k+1} 2^i = 2^0 + 2^1 + \dots + 2^k + 2^{k+1}$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$ and $P(k + 1)$ is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

$$
\sum_{i=0}^{k} 2^i = \boxed{2^0 + 2^1 + \dots + 2^k}
$$

$$
\sum_{i=0}^{k+1} 2^i = \boxed{2^0 + 2^1 + \dots + 2^k} + 2^{k+1}
$$

1. Assume
$$
\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1
$$

1. Assume
$$
\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1
$$

2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$

\n- 1. Assume
$$
\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1
$$
\n- 2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
\n- 3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$
\n

1. Assume
$$
\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1
$$

\n2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
\n3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$
\n4. $= 2^{k+1} + 2^{k+1} - 1$

1. Assume
$$
\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1
$$

\n2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
\n3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$
\n4. $= 2^{k+1} + 2^{k+1} - 1$
\n5. $= 2 \cdot 2^{k+1} - 1$

1. Assume
$$
\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1
$$

\n2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
\n3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$
\n4. $= 2^{k+1} + 2^{k+1} - 1$
\n5. $= 2 \cdot 2^{k+1} - 1$
\n6. $= 2^{k+2} - 1$

• Example 4: Prove $\forall n P(n)$ by mathematical induction on the natural numbers where

$$
P(n) \text{ is } \sum_{j=0}^{n} ar^j = ar^0 + ar^1 + \dots + ar^n = \frac{ar^{n+1}-a}{r-1} \text{ when } r \neq 1
$$

1. Base case: Prove $P(0)$

$$
\sum_{j=0}^{0} ar^j = a = \frac{a(r-1)}{r-1} = \frac{ar-a}{r-1} = \frac{ar^{0+1}-a}{r-1}
$$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{j=0}^{k} ar^j =$ $ar^{k+1}-a$ $r-1$ and $P(k + 1)$ is $\sum_{j=0}^{k+1} ar^j =$ $ar^{k+2}-a$ $r-1$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$

Note that $P(k)$ is $\sum_{j=0}^{k} ar^j =$ $ar^{k+1}-a$ $r-1$ and $P(k + 1)$ is $\sum_{j=0}^{k+1} ar^j =$ $ar^{k+2}-a$ $\frac{r-1}{r-1}$ We assume this We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{j=0}^{k} ar^j =$ $ar^{k+1}-a$ $r-1$ and $P(k + 1)$ is $\sum_{j=0}^{k+1} ar^j =$ $ar^{k+2}-a$ $r-1$

$$
\sum_{j=0}^{k} ar^j = ar^0 + ar^1 + \dots + ar^k
$$

$$
\sum_{j=0}^{k+1} ar^j = ar^0 + ar^1 + \dots + ar^k + ar^{k+1}
$$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $\sum_{j=0}^{k} ar^j =$ $ar^{k+1}-a$ $r-1$ and $P(k + 1)$ is $\sum_{j=0}^{k+1} ar^j =$ $ar^{k+2}-a$ $r-1$

$$
\sum_{j=0}^{k} ar^j = \boxed{ar^0 + ar^1 + \dots + ar^k}
$$

$$
\sum_{j=0}^{k+1} ar^j = \boxed{ar^0 + ar^1 + \dots + ar^k} + ar^{k+1}
$$

Ĩ,

1. Assume
$$
\sum_{j=0}^{k} ar^j = \frac{ar^{k+1}-a}{r-1}
$$

1. Assume
$$
\sum_{j=0}^{k} ar^j = \frac{ar^{k+1}-a}{r-1}
$$

2. $\sum_{j=0}^{k} ar^j + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$

1. Assume
$$
\sum_{j=0}^{k} ar^j = \frac{ar^{k+1}-a}{r-1}
$$

\n2. $\sum_{j=0}^{k} ar^j + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
\n3. $\sum_{j=0}^{k+1} ar^j = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$

1. Assume
$$
\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}
$$

\n2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
\n3. $\sum_{j=0}^{k+1} ar^{j} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
\n4.
$$
= \frac{ar^{k+1}-a}{r-1} + \frac{(r-1)(ar^{k+1})}{r-1}
$$

1. Assume
$$
\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}
$$

\n2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
\n3. $\sum_{j=0}^{k+1} ar^{j} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
\n4. $= \frac{ar^{k+1}-a}{r-1} + \frac{(r-1)(ar^{k+1})}{r-1}$
\n5. $= \frac{ar^{k+1}-a}{r-1} + \frac{rar^{k+1}-ar^{k+1}}{r-1}$

1. Assume
$$
\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}
$$

\n2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
\n3. $\sum_{j=0}^{k+1} ar^{j} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
\n4. $= \frac{ar^{k+1}-a}{r-1} + \frac{(r-1)(ar^{k+1})}{r-1}$
\n5. $= \frac{ar^{k+1}-a}{r-1} + \frac{rar^{k+1}-ar^{k+1}}{r-1}$
\n6. $= \frac{ar^{k+2}-a}{r-1}$