Section 8.4 Mathematical Induction

Principle of Mathematical Induction

- Let the domain of discourse be the positive integers
- For a predicate P, we wish to prove $\forall nP(n)$
- To do this we first prove the predicate for the smallest positive integer, P(1)
- Then we prove that if the predicate is true for k, P(k), then it is also true for k + 1:

 $P(k) \rightarrow P(k+1)$

Principle of Mathematical Induction

• If we prove both P(1) and $\forall k(P(k) \rightarrow P(k + 1))$, then it must be the case that

 $\forall nP(n)$

Because we have P(1)and we have P(2) because P(1) and $P(1) \rightarrow P(2)$ and we have P(3) because P(2) and $P(2) \rightarrow P(3)$ and we have P(4) because P(3) and $P(3) \rightarrow P(4)$

Example: Prove ∀nP(n) by mathematical induction on the positive integers where

$$P(n)$$
 is $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

1. Base case: Prove P(1)

$$\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}$$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ and P(k+1) is $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ We assume this and P(k+1) is $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ We assume this and P(k+1) is $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$ We must conclude this

1)

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ and P(k+1) is $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$

$$\sum_{i=1}^{k} i = 1 + 2 + \dots + k$$
$$\sum_{i=1}^{k+1} i = 1 + 2 + \dots + k + (k + 1)$$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$

2. Induction step: Prove P(k) → P(k + 1)

 Assume ∑_{i=1}^k i = ^{k(k+1)}/₂
 ∑_{i=1}^k i + (k + 1) = ^{k(k+1)}/₂ + (k + 1)

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ 1. Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ 2. $\sum_{i=1}^{k} i + (k + 1) = \frac{k(k+1)}{2} + (k + 1)$ 3. $\sum_{i=1}^{k+1} i = \frac{k(k+1)}{2} + (k + 1)$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ 2. $\sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1)$ 3. $\sum_{i=1}^{k+1} i = \frac{k(k+1)}{2} + (k+1)$ 4. $= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ 2. $\sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1)$ 3. $\sum_{i=1}^{k+1} i = \frac{k(k+1)}{2} + (k+1)$ 4. $=\frac{k(k+1)}{2} + \frac{2(k+1)}{2}$ 5. $=\frac{k^2+k}{2}+\frac{2k+2}{2}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ 2. $\sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1)$ 3. $\sum_{i=1}^{k+1} i = \frac{k(k+1)}{2} + (k+1)$ 4. $=\frac{k(k+1)}{2} + \frac{2(k+1)}{2}$ 5. $=\frac{k^2+k}{2}+\frac{2k+2}{2}$ 6. $=\frac{k^2+3k+2}{2}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ 1. Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ 2. $\sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1)$ 3. $\sum_{i=1}^{k+1} i = \frac{k(k+1)}{2} + (k+1)$ 4. $=\frac{k(k+1)}{2} + \frac{2(k+1)}{2}$ 5. $=\frac{k^2+k}{2}+\frac{2k+2}{2}$ 6. $=\frac{k^2+3k+2}{2}$ $=\frac{(k+1)(k+2)}{2}$ 7.

• Example 2: Prove $\forall nP(n)$ by mathematical induction where P(n) is "The sum of the first n odd positive integers is n^2 "

```
P(1) \text{ is } 1 = 1^2
P(2) \text{ is } 1 + 3 = 2^2
P(3) \text{ is } 1 + 3 + 5 = 3^2
P(4) \text{ is } 1 + 3 + 5 + 7 = 4^2
```

Example 2: Prove ∀nP(n) by mathematical induction on the positive integers where

P(n) is "The sum of the first n odd positive integers is n^2 "

	n	<i>n</i> th odd number
$P(1)$ is $1 = 1^2$	1	1
$P(2)$ is $1 + 3 = 2^2$	2	3
$P(3)$ is $1 + 3 + 5 = 3^2$	3	5
$P(4)$ is $1 + 3 + 5 + 7 = 4^2$	4	7
	k	2k - 1

• Example 2: Prove $\forall nP(n)$ by mathematical induction on the positive integers where

P(n) is "The sum of the first n odd positive integers is n^{2} "

1. Base case: Prove P(1)

$$1 = 1^2$$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that P(k) is $1 + 3 + \dots + (2k - 1) = k^2$ and P(k + 1) is $1 + 3 + \dots + (2k - 1) + (2k + 1) = (k + 1)^2$

2. Induction step: Prove $P(k) \to P(k+1)$ Note that P(k) is $1 + 3 + \dots + (2k - 1) = k^2$ We assume this and P(k + 1) is $1 + 3 + \dots + (2k - 1) + (2k + 1) = (k + 1)^2$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $1 + 3 + \dots + (2k - 1) = k^2$ and P(k+1) is $1 + 3 + \dots + (2k - 1) + (2k + 1) = (k + 1)^2$

We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $1 + 3 + \dots + (2k - 1) = k^2$ and P(k+1) is $1 + 3 + \dots + (2k - 1) + (2k + 1) = (k + 1)^2$

1. Assume
$$1 + 3 + \dots + (2k - 1) = k^2$$

1. Assume
$$1 + 3 + \dots + (2k - 1) = k^2$$

2. $1 + 3 + \dots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$

1. Assume
$$1 + 3 + \dots + (2k - 1) = k^2$$

2. $1 + 3 + \dots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$
3. $= (k + 1)(k + 1)$

1. Assume
$$1 + 3 + \dots + (2k - 1) = k^2$$

2. $1 + 3 + \dots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$
3. $= (k + 1)(k + 1)$
4. $= (k + 1)^2$

Induction on the Natural Numbers

- If the domain of discourse changes from the positive integers $\{1, 2, 3, \dots\}$ to the natural numbers $\{0, 1, 2, \dots\}$, then to prove $\forall nP(n)$
 - by induction, we must start with the smallest natural number. So we prove

P(0)

and we still prove

$$P(k) \rightarrow P(k+1)$$

Example 3: Prove ∀nP(n) by mathematical induction on the natural numbers where

$$P(n)$$
 is $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$

1. Base case: Prove P(0)

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{1} - 1$$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$ and P(k+1) is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$ We assume this and P(k+1) is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$ We assume this and P(k+1) is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$ We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$ and P(k+1) is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

$$\sum_{i=0}^{k} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{k}$$

 $\sum_{i=0}^{k+1} 2^i = 2^0 + 2^1 + \dots + 2^k + 2^{k+1}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$ and P(k+1) is $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

$$\sum_{i=0}^{k} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{k}$$

$$\sum_{i=0}^{k+1} 2^i = 2^0 + 2^1 + \dots + 2^k + 2^{k+1}$$

1. Assume
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

1. Assume
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$

1. Assume
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$

1. Assume
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$
4. $= 2^{k+1} + 2^{k+1} - 1$

1. Assume
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$
4. $= 2^{k+1} + 2^{k+1} - 1$
5. $= 2 \cdot 2^{k+1} - 1$

1. Assume
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

2. $\sum_{i=0}^{k} 2^{i} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$
3. $\sum_{i=0}^{k+1} 2^{i} = 2^{k+1} - 1 + 2^{k+1}$
4. $= 2^{k+1} + 2^{k+1} - 1$
5. $= 2 \cdot 2^{k+1} - 1$
6. $= 2^{k+2} - 1$

Example 4: Prove ∀nP(n) by mathematical induction on the natural numbers where

$$P(n)$$
 is $\sum_{j=0}^{n} ar^{j} = ar^{0} + ar^{1} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r-1}$ when $r \neq 1$

. . .

1. Base case: Prove P(0)

$$\sum_{j=0}^{0} ar^{j} = a = \frac{a(r-1)}{r-1} = \frac{ar-a}{r-1} = \frac{ar^{0+1}-a}{r-1}$$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{j=0}^{k} ar^j = \frac{ar^{k+1}-a}{r-1}$ and P(k+1) is $\sum_{j=0}^{k+1} ar^j = \frac{ar^{k+2}-a}{r-1}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

Note that P(k) is $\sum_{j=0}^{k} ar^j = \frac{ar^{k+1}-a}{r-1}$ We assume this and P(k+1) is $\sum_{j=0}^{k+1} ar^j = \frac{ar^{k+2}-a}{r-1}$ We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{j=0}^{k} ar^j = \frac{ar^{k+1}-a}{r-1}$ and P(k+1) is $\sum_{j=0}^{k+1} ar^j = \frac{ar^{k+2}-a}{r-1}$

$$\sum_{j=0}^{k} ar^{j} = ar^{0} + ar^{1} + \dots + ar^{k}$$

$$\sum_{j=0}^{k+1} ar^{j} = ar^{0} + ar^{1} + \dots + ar^{k} + ar^{k+1}$$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $\sum_{j=0}^{k} ar^j = \frac{ar^{k+1}-a}{r-1}$ and P(k+1) is $\sum_{j=0}^{k+1} ar^j = \frac{ar^{k+2}-a}{r-1}$

$$\sum_{j=0}^{k} ar^{j} = ar^{0} + ar^{1} + \dots + ar^{k}$$

$$\sum_{j=0}^{k+1} ar^{j} = ar^{0} + ar^{1} + \dots + ar^{k} + ar^{k+1}$$

1. Assume
$$\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}$$

1. Assume
$$\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}$$

2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$

1. Assume
$$\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}$$

2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
3. $\sum_{j=0}^{k+1} ar^{j} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$

1. Assume
$$\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}$$

2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
3. $\sum_{j=0}^{k+1} ar^{j} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
4. $= \frac{ar^{k+1}-a}{r-1} + \frac{(r-1)(ar^{k+1})}{r-1}$

1. Assume
$$\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}$$

2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
3. $\sum_{j=0}^{k+1} ar^{j} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
4. $= \frac{ar^{k+1}-a}{r-1} + \frac{(r-1)(ar^{k+1})}{r-1}$
5. $= \frac{ar^{k+1}-a}{r-1} + \frac{rar^{k+1}-ar^{k+1}}{r-1}$

1. Assume
$$\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}$$

2. $\sum_{j=0}^{k} ar^{j} + ar^{k+1} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
3. $\sum_{j=0}^{k+1} ar^{j} = \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$
4. $= \frac{ar^{k+1}-a}{r-1} + \frac{(r-1)(ar^{k+1})}{r-1}$
5. $= \frac{ar^{k+1}-a}{r-1} + \frac{rar^{k+1}-ar^{k+1}}{r-1}$
6. $= \frac{ar^{k+2}-a}{r-1}$