Section 8.5 More Inductive Proofs

1

Induction Hypothesis

- When proving $\forall n P(n)$ by mathematical induction, we prove $P(k) \rightarrow$ $P(k + 1)$ by assuming $P(k)$ and deriving $P(k + 1)$
- $P(k)$ is called the induction hypothesis

• Example 5: Prove $\forall n P(n)$ by mathematical induction on the natural numbers where

 $P(n)$ is $n < 2^n$

1. Base case: Prove $P(0)$

 $0 < 1 = 2^0$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $k < 2^k$ and $P(k + 1)$ is $k + 1 < 2^{k+1}$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $k < 2^k$ We assume this and $P(k + 1)$ is $k + 1 < 2^{k+1}$ We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $|k| < 2^k$ and $P(k + 1)$ is $|k| + 1 < 2^{k+1}$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$

1. Assume $k < 2^k$

- 2. Induction step: Prove $P(k) \rightarrow P(k + 1)$
	- 1. Assume $k < 2^k$
	- 2. $k+1 < 2^k+1$

- 1. Assume $k < 2^k$
- 2. $k+1 < 2^k+1$
- 3. $\leq 2^k + 2^k$ Since $k \in \mathbb{N}$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$

Lines 2-5: $k + 1 < 2^k + 1 \le 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$

• Example 6: Prove $\forall n P(n)$ by mathematical induction on the natural numbers where

 $P(n)$ is $2^n < n!$ when $n \geq 4$

Instead, use mathematical induction on the set $\{4, 5, 6, ...\}$. For this set, the base case is $P(4)$ and the induction step is still $P(k) \rightarrow P(k + 1)$

• Example 6: Prove $\forall n P(n)$ by mathematical induction on the set {4, 5, 6, … } where

 $P(n)$ is $2^n < n!$

1. Base case: Prove $P(4)$

 $2^4 = 16 < 24 = 1 \cdot 2 \cdot 3 \cdot 4 = 4!$

2. Prove
$$
P(k) \rightarrow P(k+1)
$$
\n\nNote that $P(k)$ is $2^k < k!$ \n\nand $P(k+1)$ is $2^{k+1} < (k+1)!$

We assume this

We must conclude this

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $2^k < k!$ and $P(k + 1)$ is $2^{k+1} < (k + 1)!$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $2^k < k!$

Ĩ.

- 2. Prove $P(k) \rightarrow P(k + 1)$
	- 1. Assume $2^k < k!$
	- 2. $2^k \cdot 2 < k! \cdot 2$

- 2. Prove $P(k) \rightarrow P(k + 1)$
	- 1. Assume $2^k < k!$
	- 2. $2^k \cdot 2 < k! \cdot 2$
	- 3. $2^{k+1} < k! \cdot 2$

- 2. Prove $P(k) \rightarrow P(k + 1)$
	- 1. Assume $2^k < k!$
	- 2. $2^k \cdot 2 < k! \cdot 2$
	- 3. $2^{k+1} < k! \cdot 2$
	- 4. $\langle k! \cdot (k+1) \text{ since } k \in \{4, 5, 6, \dots \}$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $2^k < k!$ 2. $2^k \cdot 2 < k! \cdot 2$ 3. $2^{k+1} < k! \cdot 2$ 4. $\langle k! \cdot (k+1) \text{ since } k \in \{4, 5, 6, \dots \}$ 5. $= (k + 1)!$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $2^k < k!$ 2. $2^k \cdot 2 < k! \cdot 2$ 3. $2^{k+1} < k! \cdot 2$ 4. $\langle k! \cdot (k+1) \text{ since } k \in \{4, 5, 6, \dots \}$ 5. $= (k + 1)!$ 6. $2^{k+1} < (k+1)!$

Divisibility

• Example 8: Prove $\forall n P(n)$ by mathematical induction on the natural numbers where

$$
P(n)
$$
 is $n^3 - n$ is divisible by 3

1. Base case: Prove $P(0)$

$$
0^3 - 0 = 0 = 3 \cdot 0
$$

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $k^3 - k = 3i$ for some integer i and $P(k + 1)$ is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $k^3 - k = 3i$ for some integer i We assume this and $P(k + 1)$ is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

We must conclude this

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $k^3 - k = 3i$ for some integr i and $P(k + 1)$ is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

 $P(k + 1)$ is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

 $(k + 1)^3 - (k + 1)$

 $P(k + 1)$ is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

$$
(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)
$$

 $P(k + 1)$ is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

$$
(k+1)3-(k+1) = (k3+3k2+3k+1) - (k+1)
$$

= k³ + 3k² + 3k - k

 $P(k + 1)$ is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

$$
(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)
$$

= $k^3 + 3k^2 + 3k - k$
= $\sqrt{k^3 - k} + 3k^2 + 3k$

- 2. Prove $P(k) \rightarrow P(k + 1)$
	- 1. Assume $k^3 k = 3i$ for some integer i

- 2. Prove $P(k) \rightarrow P(k + 1)$
	- 1. Assume $k^3 k = 3i$ for some integer i 2. $3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $k^3 - k = 3i$ for some integer i 2. $3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $3^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $k^3 - k = 3i$ for some integer i 2. $3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $k^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$ 4. $k^3 + 3k^2 + 3k - k + 1 - 1 = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $k^3 - k = 3i$ for some integer i 2. $3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $k^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$ 4. $3^3 + 3k^2 + 3k - k + 1 - 1 = 3i + 3k^2 + 3k$ 5. $3^3 + 3k^2 + 3k + 1 - k - 1 = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $k^3 - k = 3i$ for some integer i 2. $3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $k^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$ 4. $3^3 + 3k^2 + 3k - k + 1 - 1 = 3i + 3k^2 + 3k$ 5. $k^3 + 3k^2 + 3k + 1 - k - 1 = 3i + 3k^2 + 3k$ 6. $k^3 + 3k^2 + 3k + 1 - (k + 1) = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $k^3 - k = 3i$ for some integer i 2. $3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $3^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$ 4. $3^3 + 3k^2 + 3k - k + 1 - 1 = 3i + 3k^2 + 3k$ 5. $k^3 + 3k^2 + 3k + 1 - k - 1 = 3i + 3k^2 + 3k$ 6. $k^3 + 3k^2 + 3k + 1 - (k + 1) = 3i + 3k^2 + 3k$ 7. $(k + 1)^3 - (k + 1) = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k + 1)$

1. Assume $k^3 - k = 3i$ for some integer i 2. $3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $3^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$ 4. $3^3 + 3k^2 + 3k - k + 1 - 1 = 3i + 3k^2 + 3k$ 5. $k^3 + 3k^2 + 3k + 1 - k - 1 = 3i + 3k^2 + 3k$ 6. $k^3 + 3k^2 + 3k + 1 - (k + 1) = 3i + 3k^2 + 3k$ 7. $(k + 1)^3 - (k + 1) = 3i + 3k^2 + 3k$ 8. $(k + 1)^3 - (k + 1) = 3(i + k^2 + k)$

• Example 9: Prove $\forall n P(n)$ by mathematical induction where $P(n)$ is $7^{n+2} + 8^{2n+1}$ is divisible by 57

1. Prove $P(0)$ $7^{0+2} + 8^{2 \cdot 0 + 1} = 7^2 + 8^1 = 49 + 8 = 57$

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $7^{k+2} + 8^{2k+1}$ is divisible by 57 and $P(k + 1)$ is $7^{k+1+2} + 8^{2(k+1)+1}$ is divisible by 57 We assume this

We must conclude this

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $7^{k+2} + 8^{2k+1}$ is divisible by 57 and $P(k + 1)$ is $7^{k+1+2} + 8^{2(k+1)+1}$ is divisible by 57

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is $7^{k+2} + 8^{2k+1}$ is divisible by 57 and $P(k + 1)$ is $7^{k+1+2} + 8^{2(k+1)+1}$ is divisible by 57

$$
7^{k+1+2} + 8^{2(k+1)+1} = 7^{k+1+2} + 8^{2(k+1)+1}
$$

= $7^{k+1+2} + 8^{2k+2+1}$
= $7 \cdot 7^{k+2} + 8^2 \cdot 8^{2k+1}$
= $7 \cdot 7^{k+2} + 64 \cdot 8^{2k+1}$
= $7 \cdot 7^{k+2} + (7 + 57) \cdot 8^{2k+1}$
= $7 \cdot 7^{k+2} + 7 \cdot 8^{2k+1} + 57 \cdot 8^{2k+1}$
= $7[(7^{k+2} + 8^{2k+1})] + 57 \cdot 8^{2k+1}$

2. Prove $P(k) \rightarrow P(k + 1)$

 $7^{k+2} + 8^{2k+1}$ is divisible by 57 Assumption $7^{k+2} + 8^{2k+1} = 57i$ for some integer i $7(7^{k+2} + 8^{2k+1}) + 57 \cdot 8^{2k+1} = 7 \cdot 57i + 57 \cdot 8^{2k+1}$ $7(7^{k+2} + 8^{2k+1}) + 57 \cdot 8^{2k+1} = 57(7i + 8^{2k+1})$ $7 \cdot 7^{k+2} + 7 \cdot 8^{2k+1} + 57 \cdot 8^{2k+1} = 57 (7i + 8^{2k+1})$ $7 \cdot 7^{k+2} + 64 \cdot 8^{2k+1} = 57(7i + 8^{2k+1})$ $7^{k+2+1} + 8^{2k+2+1} = 57(7i + 8^{2k+1})$ $7^{k+1+2} + 8^{2(k+1)+1} = 57(7i + 8^{2k+1})$ $7^{k+1+2} + 8^{2(k+1)+1}$ is divisible by 57

• Example 10: Prove $\forall n P(n)$ by mathematical induction on the natural numbers where

 $P(n)$ is: The power set of a set with n elements has 2^n elements

1. Prove $P(0)$

 $\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0$

2. Prove $P(k) \rightarrow P(k + 1)$

Note that $P(k)$ is: A set with k elements has 2^k subsets and $P(k + 1)$ is: A set with $k + 1$ elements has 2^{k+1} subsets

2. Prove $P(k) \rightarrow P(k + 1)$ Note that $P(k)$ is A set with k elements has 2^k subsets and $P(k + 1)$ is A set with $k + 1$ elements has 2^{k+1} subsets We assume this

We must conclude this

2. Prove $P(k) \rightarrow P(k + 1)$

Note that $P(k)$ is A set with k elements has 2^k subsets and $P(k + 1)$ is A set with $k + 1$ elements has 2^{k+1} subsets

We need to be able to count the subsets of a set. Given that a set with k elements has 2^k subsets, how do we count the additional subsets that are possible by adding another element to the set?

The Subsets of $\{a, b, c\}$ and $\{a, b, c\}$ \cup $\{d\}$

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a $k + 1$ st element to the set to get a set with $k + 1$ elements.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a $k + 1$ st element to the set to get a set with $k + 1$ elements.

Consider the subsets of the new set of $k + 1$ elements. Each subset either does not contain the $k + 1$ st element or does contain it.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a $k + 1$ st element to the set to get a set with $k + 1$ elements.

Consider the subsets of the new set of $k + 1$ elements. Each subset either does not contain the $k + 1$ st element or does contain it.

• The subsets that do not contain the $k + 1$ st element are also the subsets of the set with k elements. By the assumption, there are 2^k such subsets.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a $k + 1$ st element to the set to get a set with $k + 1$ elements.

Consider the subsets of the new set of $k + 1$ elements. Each subset either does not contain the $k + 1$ st element or does contain it.

- The subsets that do not contain the $k + 1$ st element are also the subsets of the set with k elements. By the assumption, there are 2^k such subsets.
- The subsets that do contain the $k + 1$ st element are the result of adding the $k + 1$ st element to each of the 2^k such subsets of the original set. By the assumption there are 2^k such subsets.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a $k + 1$ st element to the set to get a set with $k + 1$ elements.

Consider the subsets of the new set of $k + 1$ elements. Each subset either does not contain the $k + 1$ st element or does contain it.

- The subsets that do not contain the $k + 1$ st element are also the subsets of the set with k elements. By the assumption, there are 2^k such subsets.
- The subsets that do contain the $k + 1$ st element are the result of adding the $k + 1$ st element to each of the 2^k such subsets of the original set. By the assumption there are 2^k such subsets.
- Thus, there are a total of $2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$ subsets