Section 8.5 More Inductive Proofs

Induction Hypothesis

- When proving $\forall nP(n)$ by mathematical induction, we prove $P(k) \rightarrow P(k+1)$ by assuming P(k) and deriving P(k+1)
- P(k) is called the induction hypothesis

• Example 5: Prove $\forall n \ P(n)$ by mathematical induction on the natural numbers where

P(n) is $n < 2^n$

1. Base case: Prove P(0)

 $0 < 1 = 2^0$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $k < 2^k$ and P(k+1) is $k+1 < 2^{k+1}$

2. Induction step: Prove $P(k) \rightarrow P(k + 1)$ Note that P(k) is $k < 2^k$ We assume this and P(k + 1) is $k + 1 < 2^{k+1}$ We must conclude this

2. Induction step: Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $k < 2^k$ and P(k+1) is $k + 1 < 2^{k+1}$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

1. Assume $k < 2^k$

- 2. Induction step: Prove $P(k) \rightarrow P(k+1)$
 - 1. Assume $k < 2^k$
 - 2. $k+1 < 2^k + 1$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

1.	Assume $k < 2^k$
----	------------------

2.
$$k+1 < 2^k + 1$$

3.
$$\leq 2^k + 2^k$$
 Since $k \in N$

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

1.	Assume $k < 2^k$	
2.	$k + 1 < 2^k + 1$	
3.	$\leq 2^k + 2^k$	Since $k \in N$
4.	$= 2 \cdot 2^k$	

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

1.	Assume $k < 2^k$	
2.	$k + 1 < 2^k + 1$	
3.	$\leq 2^k + 2^k$	Since $k \in N$
4.	$= 2 \cdot 2^k$	
5.	$= 2^{k+1}$	

• • •

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

1.	Assume $k < 2^k$	
2.	$k + 1 < 2^k + 1$	
3.	$\leq 2^k + 2^k$	Since $k \in N$
4.	$= 2 \cdot 2^k$	
5.	$= 2^{k+1}$	
6.	$k + 1 < 2^{k+1}$	

2. Induction step: Prove $P(k) \rightarrow P(k+1)$

1.	Assume $k < 2^k$	
2.	$k + 1 < 2^k + 1$	
3.	$\leq 2^k + 2^k$	Since $k \in N$
4.	$= 2 \cdot 2^k$	
5.	$= 2^{k+1}$	
6.	$k + 1 < 2^{k+1}$	

Lines 2-5: $k + 1 < 2^k + 1 \le 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$

• Example 6: Prove $\forall nP(n)$ by mathematical induction on the natural numbers where

P(n) is $2^n < n!$ when $n \ge 4$

Instead, use mathematical induction on the set $\{4, 5, 6, ...\}$. For this set, the base case is P(4) and the induction step is still $P(k) \rightarrow P(k + 1)$

• Example 6: Prove $\forall nP(n)$ by mathematical induction on the set $\{4, 5, 6, ...\}$ where

P(n) is $2^n < n!$

1. Base case: Prove P(4)

 $2^4 = 16 < 24 = 1 \cdot 2 \cdot 3 \cdot 4 = 4!$

2. Prove
$$P(k) \rightarrow P(k+1)$$

Note that $P(k)$ is $2^k < k!$
and $P(k+1)$ is $2^{k+1} < (k+1)!$

We assume this

We must conclude this

2. Prove
$$P(k) \rightarrow P(k+1)$$

Note that $P(k)$ is $2^k < k!$
and $P(k+1)$ is $2^{k+1} < (k+1)!$

2. Prove $P(k) \rightarrow P(k+1)$

1. Assume $2^k < k!$

- 2. Prove $P(k) \rightarrow P(k+1)$
 - 1. Assume $2^k < k!$
 - 2. $2^k \cdot 2 < k! \cdot 2$

- 2. Prove $P(k) \rightarrow P(k+1)$
 - 1. Assume $2^k < k!$
 - 2. $2^k \cdot 2 < k! \cdot 2$
 - 3. $2^{k+1} < k! \cdot 2$

- 2. Prove $P(k) \rightarrow P(k+1)$
 - 1. Assume $2^k < k!$
 - 2. $2^k \cdot 2 < k! \cdot 2$
 - 3. $2^{k+1} < k! \cdot 2$
 - 4. $< k! \cdot (k+1)$ since $k \in \{4, 5, 6, ...\}$

2. Prove $P(k) \rightarrow P(k+1)$

1. Assume $2^{k} < k!$ 2. $2^{k} \cdot 2 < k! \cdot 2$ 3. $2^{k+1} < k! \cdot 2$ 4. $< k! \cdot (k+1)$ since $k \in \{4, 5, 6, ...\}$ 5. = (k+1)!

2. Prove $P(k) \rightarrow P(k+1)$

1. Assume $2^{k} < k!$ 2. $2^{k} \cdot 2 < k! \cdot 2$ 3. $2^{k+1} < k! \cdot 2$ 4. $< k! \cdot (k+1)$ since $k \in \{4, 5, 6, ...\}$ 5. = (k+1)!6. $2^{k+1} < (k+1)!$

Divisibility

Example 8: Prove ∀n P(n) by mathematical induction on the natural numbers where

$$P(n)$$
 is $n^3 - n$ is divisible by 3

1. Base case: Prove P(0)

$$0^3 - 0 = 0 = 3 \cdot 0$$

2. Prove $P(k) \rightarrow P(k + 1)$ Note that P(k) is $k^3 - k = 3i$ for some integer iand P(k + 1) is $(k + 1)^3 - (k + 1) = 3i$ for some integer i

2. Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $k^3 - k = 3i$ for some integer i We assume this and P(k+1) is $(k+1)^3 - (k+1) = 3i$ for some integer i

We must conclude this

2. Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $k^3 - k = 3i$ for some integr iand P(k+1) is $(k+1)^3 - (k+1) = 3i$ for some integer i

P(k + 1) is $(k + 1)^3 - (k + 1) = 3i$ for some integer *i*

 $(k+1)^3 - (k+1)$

P(k + 1) is $(k + 1)^3 - (k + 1) = 3i$ for some integer *i*

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$

P(k + 1) is $(k + 1)^3 - (k + 1) = 3i$ for some integer *i*

$$(k+1)^{3} - (k+1) = (k^{3} + 3k^{2} + 3k + 1) - (k+1)$$
$$= k^{3} + 3k^{2} + 3k - k$$

P(k + 1) is $(k + 1)^3 - (k + 1) = 3i$ for some integer *i*

$$(k+1)^{3} - (k+1) = (k^{3} + 3k^{2} + 3k + 1) - (k+1)$$
$$= k^{3} + 3k^{2} + 3k - k$$
$$= k^{3} - k + 3k^{2} + 3k$$

- 2. Prove $P(k) \rightarrow P(k+1)$
 - 1. Assume $k^3 k = 3i$ for some integer *i*

- 2. Prove $P(k) \rightarrow P(k+1)$
 - 1. Assume $k^3 k = 3i$ for some integer *i* 2. $k^3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k+1)$

1.Assume $k^3 - k = 3i$ for some integer i2. $k^3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $k^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k+1)$

1. Assume $k^{3} - k = 3i$ for some integer *i* 2. $k^{3} - k + 3k^{2} + 3k = 3i + 3k^{2} + 3k$ 3. $k^{3} + 3k^{2} + 3k - k = 3i + 3k^{2} + 3k$ 4. $k^{3} + 3k^{2} + 3k - k + 1 - 1 = 3i + 3k^{2} + 3k$

2. Prove $P(k) \rightarrow P(k+1)$

1. Assume $k^{3} - k = 3i$ for some integer *i* 2. $k^{3} - k + 3k^{2} + 3k = 3i + 3k^{2} + 3k$ 3. $k^{3} + 3k^{2} + 3k - k = 3i + 3k^{2} + 3k$ 4. $k^{3} + 3k^{2} + 3k - k + 1 - 1 = 3i + 3k^{2} + 3k$ 5. $k^{3} + 3k^{2} + 3k + 1 - k - 1 = 3i + 3k^{2} + 3k$

2. Prove $P(k) \rightarrow P(k+1)$

1. Assume $k^3 - k = 3i$ for some integer *i* 2. $k^3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $k^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$ 4. $k^3 + 3k^2 + 3k - k + 1 - 1 = 3i + 3k^2 + 3k$ 5. $k^3 + 3k^2 + 3k + 1 - k - 1 = 3i + 3k^2 + 3k$ 6. $k^3 + 3k^2 + 3k + 1 - (k + 1) = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k+1)$

1. Assume $k^3 - k = 3i$ for some integer *i* 2. $k^3 - k + 3k^2 + 3k = 3i + 3k^2 + 3k$ 3. $k^3 + 3k^2 + 3k - k = 3i + 3k^2 + 3k$ 4. $k^3 + 3k^2 + 3k - k + 1 - 1 = 3i + 3k^2 + 3k$ 5. $k^3 + 3k^2 + 3k + 1 - k - 1 = 3i + 3k^2 + 3k$ 6. $k^3 + 3k^2 + 3k + 1 - (k + 1) = 3i + 3k^2 + 3k$ 7. $(k + 1)^3 - (k + 1) = 3i + 3k^2 + 3k$

2. Prove $P(k) \rightarrow P(k+1)$

Assume $k^3 - k = 3i$ for some integer i 1. $k^{3} - k + 3k^{2} + 3k = 3i + 3k^{2} + 3k$ 2. $k^{3} + 3k^{2} + 3k - k = 3i + 3k^{2} + 3k$ 3. $k^{3} + 3k^{2} + 3k - k + 1 - 1 = 3i + 3k^{2} + 3k$ 4. 5. $k^3 + 3k^2 + 3k + 1 - k - 1 = 3i + 3k^2 + 3k$ 6. $k^3 + 3k^2 + 3k + 1 - (k + 1) = 3i + 3k^2 + 3k$ $(k+1)^3 - (k+1) = 3i + 3k^2 + 3k$ 7. $(k+1)^{3}-(k+1) = 3(i+k^{2}+k)$ 8.

• Example 9: Prove $\forall nP(n)$ by mathematical induction where P(n) is $7^{n+2} + 8^{2n+1}$ is divisible by 57

1. Prove P(0) $7^{0+2} + 8^{2 \cdot 0+1} = 7^2 + 8^1 = 49 + 8 = 57$

2. Prove $P(k) \rightarrow P(k+1)$ We assume this Note that P(k) is $7^{k+2} + 8^{2k+1}$ is divisible by 57 and P(k+1) is $7^{k+1+2} + 8^{2(k+1)+1}$ is divisible by 57

We must conclude this

2. Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $7^{k+2} + 8^{2k+1}$ is divisible by 57 and P(k+1) is $7^{k+1+2} + 8^{2(k+1)+1}$ is divisible by 57

2. Prove $P(k) \rightarrow P(k+1)$ Note that P(k) is $7^{k+2} + 8^{2k+1}$ is divisible by 57 and P(k+1) is $7^{k+1+2} + 8^{2(k+1)+1}$ is divisible by 57

$$7^{k+1+2} + 8^{2(k+1)+1} = 7^{k+1+2} + 8^{2(k+1)+1}$$

= $7^{k+1+2} + 8^{2k+2+1}$
= $7 \cdot 7^{k+2} + 8^2 \cdot 8^{2k+1}$
= $7 \cdot 7^{k+2} + 64 \cdot 8^{2k+1}$
= $7 \cdot 7^{k+2} + (7+57) \cdot 8^{2k+1}$
= $7 \cdot 7^{k+2} + 7 \cdot 8^{2k+1} + 57 \cdot 8^{2k+1}$
= $7(7^{k+2} + 8^{2k+1}) + 57 \cdot 8^{2k+1}$

2. Prove $P(k) \rightarrow P(k+1)$

 $7^{k+2} + 8^{2k+1} \text{ is divisible by 57}$ Assumption $7^{k+2} + 8^{2k+1} = 57i \text{ for some integer } i$ $7(7^{k+2} + 8^{2k+1}) + 57 \cdot 8^{2k+1} = 7 \cdot 57i + 57 \cdot 8^{2k+1}$ $7(7^{k+2} + 8^{2k+1}) + 57 \cdot 8^{2k+1} = 57(7i + 8^{2k+1})$ $7 \cdot 7^{k+2} + 7 \cdot 8^{2k+1} + 57 \cdot 8^{2k+1} = 57(7i + 8^{2k+1})$ $7 \cdot 7^{k+2} + 64 \cdot 8^{2k+1} = 57(7i + 8^{2k+1})$ $7^{k+2+1} + 8^{2k+2+1} = 57(7i + 8^{2k+1})$ $7^{k+1+2} + 8^{2(k+1)+1} = 57(7i + 8^{2k+1})$ $7^{k+1+2} + 8^{2(k+1)+1} = 57(7i + 8^{2k+1})$

• Example 10: Prove $\forall nP(n)$ by mathematical induction on the natural numbers where

P(n) is: The power set of a set with n elements has 2^n elements

1. Prove P(0)

 $|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0$

2. Prove $P(k) \rightarrow P(k+1)$

Note that P(k) is: A set with k elements has 2^k subsets and P(k + 1) is: A set with k + 1 elements has 2^{k+1} subsets

2. Prove $P(k) \rightarrow P(k + 1)$ We assume this Note that P(k) is A set with k elements has 2^k subsets and P(k + 1) is A set with k + 1 elements has 2^{k+1} subsets

We must conclude this

2. Prove $P(k) \rightarrow P(k+1)$

Note that P(k) is A set with k elements has 2^k subsets and P(k + 1) is A set with k + 1 elements has 2^{k+1} subsets

We need to be able to count the subsets of a set. Given that a set with k elements has 2^k subsets, how do we count the additional subsets that are possible by adding another element to the set?

The Subsets of $\{a, b, c\}$ and $\{a, b, c\} \cup \{d\}$

The subsets of { <i>a</i> , <i>b</i> , <i>c</i> }	The subsets of $\{a, b, c\}$ combined with d
Ø	$\emptyset \cup \{d\}$
$\{a\}$	$\{a\} \cup \{d\}$
$\{b\}$	$\{b\} \cup \{d\}$
$\{c\}$	$\{c\} \cup \{d\}$
$\{a, b\}$	$\{a,b\} \cup \{d\}$
{ <i>a</i> , <i>c</i> }	$\{a,c\} \cup \{d\}$
{ <i>b</i> , <i>c</i> }	$\{b,c\} \cup \{d\}$
{ <i>a</i> , <i>b</i> , <i>c</i> }	$\{a, b, c\} \cup \{d\}$
The subsets of $\{a, b, c\} \cup \{d\}$ that do not contain d	The subsets of $\{a, b, c\} \cup \{d\}$ that contain a

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a k + 1 st element to the set to get a set with k + 1 elements.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a k + 1 st element to the set to get a set with k + 1 elements.

Consider the subsets of the new set of k + 1 elements. Each subset either does not contain the k + 1st element or does contain it.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a k + 1 st element to the set to get a set with k + 1 elements.

Consider the subsets of the new set of k + 1 elements. Each subset either does not contain the k + 1st element or does contain it.

• The subsets that do not contain the k + 1st element are also the subsets of the set with k elements. By the assumption, there are 2^k such subsets.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a k + 1 st element to the set to get a set with k + 1 elements.

Consider the subsets of the new set of k + 1 elements. Each subset either does not contain the k + 1st element or does contain it.

- The subsets that do not contain the k + 1st element are also the subsets of the set with k elements. By the assumption, there are 2^k such subsets.
- The subsets that do contain the k + 1st element are the result of adding the k + 1st element to each of the 2^k such subsets of the original set. By the assumption there are 2^k such subsets.

2. Prove $P(k) \rightarrow P(k+1)$

Assume that a set with k elements has 2^k subsets.

Add a k + 1 st element to the set to get a set with k + 1 elements.

Consider the subsets of the new set of k + 1 elements. Each subset either does not contain the k + 1st element or does contain it.

- The subsets that do not contain the k + 1st element are also the subsets of the set with k elements. By the assumption, there are 2^k such subsets.
- The subsets that do contain the k + 1st element are the result of adding the k + 1st element to each of the 2^k such subsets of the original set. By the assumption there are 2^k such subsets.
- Thus, there are a total of $2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$ subsets