Section 8.7 Loop Invariants

1

Interpreting Predicate Logic Statements

• Consider the following statement in predicate logic where the domain of discourse is the natural numbers:

$$
(x = y) \vee (x + 1 = y)
$$

- What is needed in order to determine the truth value of the statement?
- We need the values of each variable that occurs in the statement

Environment Functions

• In order to know the values of variables, we use a function that takes variable names and returns values in our domain of discourse, the natural numbers, N. If V is the set of variables, then the function

 $\eta: V \to N$

So if $\eta(x) = 3$, then the variable x has the value 3

Such functions that map variables to values in the domain of discourse are called environments

Interpreting
$$
(x = y) \vee (x + 1 = y)
$$

- In order to interpret $(x = y) \vee (x + 1 = y)$, we need an environment
- Suppose that
	- $\eta(x) = 3$
	- $\eta(y) = 4$
- Then the $(x = y) \vee (x + 1 = y)$ when evaluated with η is true

Interpreting $(x = y) \vee (x + 1 = y)$

- However, if
	- $\eta_2(x) = 3$
	- $\cdot \eta_2(y) = 0$
- Then the $(x = y) \vee (x + 1 = y)$ when evaluated with η_2 is false

- A similar concept applies to computer programs
- When we hand trace a program, we write down the values of variables that are in computer memory

$$
x := 1
$$

\n $y := 5$
\n $x := y * 10$

- A similar concept applies to computer programs
- When we hand trace a program, we write down the values of variables that are in computer memory

$$
x := 1
$$

\n $y := 5$
\n $x := y * 10$
\n $x = 1$

- A similar concept applies to computer programs
- When we hand trace a program, we write down the values of variables that are in computer memory

$$
x := 1
$$

\n $y := 5$
\n $x := y * 10$
\n $x = 1$
\n $y = 5$
\n $x = 1$
\n $y = 5$

- A similar concept applies to computer programs
- When we hand trace a program, we write down the values of variables that are in computer memory

$$
x := 1
$$

\n $y := 5$
\n $x = y * 10$
\n $x = 5$
\n $x = 5$
\n $x = 5$
\n $x = 5$

Program State and Environments

- The computer memory used by a program is referred to as the program's state.
- The environment function η and the computer memory symbolized by the table created when we create a hand-trace fill the same role: they store variable values

Programs as State Transformers

• We can think of a program or a program fragment as something that transforms its state

$$
x := y * 10
$$
 transforms
\n $\begin{array}{c|c|c|c|c|c|c|c|c} x & y & \text{into} & x & y \\ \hline 1 & 5 & 50 & 5 \\ \end{array}$ \nThe program state before
\nThe program state before

executing $x := y * 10$

The program state after executing $x := y * 10$

Programs as State Transformers

- Since environment functions and program state serve the same role, we can also think of a program or even a single program statement as transforming one environment into another
	- $x := y * 10$ transforms η_1 into $\eta_1(x) = 1$ $\eta_1(y) = 5$ η_1 into η_2 $\eta_2(x) = 50$ $\eta_2(y) = 5$

• Let p and q be statements in predicate logic and let S be a program, then S is partially correct with respect to pre-condition p and postcondition q when:

For any environment η_1 in which p is true:

If S transforms η_1 to η_2 then q is true in η_2

 $p\{S\}q$ denotes that S is partially correct with respect to p and q $p\{S\}q$ is called a partial correctness assertion

• Note that $p\{S\}q$ does not require S to terminate when started with η_1 . It only requires that if S does terminate when started with a η_1 that makes p true, then the resulting η_2 makes q true

• Example:

$$
x = 1\{x = x+1\}x = 2
$$

is a true partial correctness assertion

• Example:

$$
y = 3\{x = 2 \cdot y\}x = 6
$$

is a true partial correctness assertion

- Every assignment statement is a program.
- Larger programs can be built from smaller programs in 3 ways

1. Sequencing: If S_1 and S_2 are programs, then S_1 S_2 is a program

Example: Since $x := 0$ and $y := 1$ are each programs, then

$$
x := 0 \qquad y := 1
$$

2. Conditional Statements: If S is a program and *condition* is a program test, then

```
if condition then
   \overline{S}end-if
```
2. Conditional Statements example:

$$
\begin{array}{rcl}\n\text{if } x > 0 \text{ then} \\
x & \text{:= } x+1 \\
\text{end-if}\n\end{array}
$$

3. While loop: If S is a program and condition is a program test, then

while *condition* \overline{S} end-while

3. While Loop example:

$$
while x > 0
$$

$$
y := y + x
$$

$$
x := x - 1
$$

end-while

• For each type of program, there is a rule that guides us in creating partial correctness assertions from simpler partial correctness assertions

1. Sequencing

 ${p(S_1) q \over q(S_2) r}$ $p\{S_1 \ S_2\}$ r

If $p \{S_1\} q$ and $q \{S_2\} r$ are true partial correctness assertions, then ${p(S_1, S_2}$ r is a true partial correctness assertion

1. Sequencing example:

$$
y = 2 \{x = y+1 \} x = 3 \qquad x = 3 \{y = x+1 \} y = 4
$$

$$
y = 2 \{x = y+1 \} y = x+1 \} y = 4
$$

2. Conditional Statement

 $p \wedge condition \{S_1\}$ $q \qquad (p \wedge \neg condition) \rightarrow q$ p {if condition then S_1 end-if}q

2. Conditional Statement

 $p \wedge condition \{S_1\}$ $q \qquad (p \wedge \neg condition) \rightarrow q$ p {if condition then S_1 end-if}q

If p \wedge condition $\{S_1\}$ q is a true partial correctness assertions and $(p \wedge \neg condition) \rightarrow q$ is a true in all environments η , then $p \{if$ condition then S_1 q is a true partial correctness assertion

2. Conditional Statement example

$$
\text{True } \land x < 0 \{x = -x\} \ x \ge 0 \qquad (\text{True } \land \neg x < 0) \to x \ge 0
$$
\n
$$
\text{True } \{\text{if } x < 0 \text{ then } x = -x \text{ end-if}\} \ x \ge 0
$$

2. Conditional Statement with Else

 $p \wedge condition \{S_1\} q$ $(p \wedge \neg condition) \{S_2\} q$ p {if condition then S_1 else S_2 end-if}q

2. Conditional Statement with Else

 $p \wedge condition \{S_1\}$ $q \qquad (p \wedge \neg condition) \{S_2\}$ q p {if condition then S_1 else S_2 end-if}q

If p \wedge condition $\{S_1\}$ q and $(p \wedge \neg condition)$ $\{S_2\}$ q are true partial correctness assertions, then

p {if condition then S_1 else S_2 end-if} q is a true partial correctness assertion

3. While Loop

 $p \wedge condition \{S_1\} p$

 p {while condition S_1 end-while} ($\neg condition \wedge p$)

 p is called a loop invariant

3. While Loop

 $p \wedge condition \{S_1\} p$

 p {while condition S_1 end-while} ($\neg condition \wedge p$)

If $p \wedge condition \{S_1\} p$ is a true partial correctness assertions, then $p \{while$ ${\it condition}\ S_1$ \in nd-while} (¬ ${\it condition}\ \wedge\ p$)is a true partial correctness assertion

3. While loop example

$$
x + y = z \land \neg x = 0
$$
 {x=x-1; y=y+1} x + y = z

 $x + y = z$ {while ($\neg x = 0$) $x := x - 1$ $y := y + 1$ end-while} ($\neg\neg x = 0 \land x + y = z$)

3. While loop example

$$
x + y = z \land \neg x = 0
$$
 {x=x-1; y=y+1} x + y = z
x + y = z {while (\neg x=0) x:=x-1 y:=y+1 end-while} ($\neg\neg x = 0 \land x + y = z$)

What happens if initially $x < 0$?

Loop Invariants

- A first attempt at creating a loop invariant
- Start with a hand trace and examine how the variables change

• In general, $x+y$ is a constant, i.e. $x+y=c$

Loop Invariants

• Another example

 $x := 0;$ $i := 0;$ while i < a $x := x + m$ $i := i + 1$ end-while

x i 0 0 m 1 m+m 2 m+m+m 3 ⋮ ⋮

• In general, $x = im$

• Prove $\forall n \ P(n)$ by mathematical induction on the natural numbers where $P(n)$ is

After *n* iterations of the loop, $x = im$

1. Base case: $n = 0$ After 0 iterations, $x = 0$ and $i = 0$, hence $x = im$ $x : = 0;$ $i := 0;$ while $i < a$ $x := x + m$ $i := i + 1$ end-while

2. Induction step:

Let x_k and i_k denote the values of program variables x and i after k iterations

$$
\begin{cases}\nx := 0; \\
i := 0; \\
\text{while } i < a \\
x := x + m \\
i := i + 1 \\
\text{end-while}\n\end{cases}
$$

2. Induction step:

Let x_k and i_k denote the values of program variables x and i after k iterations

1. Assume after k iterations, $x_k = i_k m$

$$
\begin{array}{c}\n\overline{x := 0;} \\
\text{i := 0;} \\
\text{while i < a} \\
\overline{x := x + m} \\
\text{i := i + 1} \\
\text{end-while}\n\end{array}
$$

2. Induction step:

Let x_k and i_k denote the values of program variables x and i after k iterations

- 1. Assume after k iterations, $x_k = i_k m$
- 2. After the $k + 1$ st iteration, $x_{k+1} = x_k + m$ and $i_{k+1} = i_k + 1$

 $x : = 0;$ $i := 0;$ while i < a $x := x + m$ $i := i + 1$ end-while

2. Induction step:

Let x_k and i_k denote the values of program variables x and i after k iterations

- 1. Assume after k iterations, $x_k = i_k m$
- 2. After the $k + 1$ st iteration, $x_{k+1} = x_k + m$ and $i_{k+1} = i_k + 1$
- 3. $x_{k+1} = x_k + m = i_k m + m = (i_k + 1)m = i_{k+1}m$

x := 0; i := 0; while i < a x := x + m i := i + 1 end-while

2. Induction step:

Let x_k and i_k denote the values of program variables x and i after k iterations

- 1. Assume after k iterations, $x_k = i_k m$
- 2. After the $k + 1$ st iteration, $x_{k+1} = x_k + m$ and $i_{k+1} = i_k + 1$
- 3. $x_{k+1} = x_k + m = i_k m + m = (i_k + 1)m = i_{k+1}m$
- 4. After $k + 1$ iterations $x_{k+1} = i_{k+1} m$

$$
\begin{cases}\n x := 0; \\
 i := 0; \\
 \text{while } i < a \\
 x := x + m \\
 i := i + 1 \\
 \text{end-while}\n\end{cases}
$$