
Section 8.7
Loop Invariants
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Interpreting Predicate Logic Statements

• Consider the following statement in predicate logic where the domain 
of discourse is the natural numbers:

𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦

• What is needed in order to determine the truth value of the 
statement?

• We need the values of each variable that occurs in the statement 
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Environment Functions

• In order to know the values of variables, we use a function that takes 
variable names and returns values in our domain of discourse, the 
natural numbers, 𝑵. If 𝑉 is the set of variables, then the function

𝜂: 𝑉 → 𝑵

So if 𝜂 𝑥 = 3, then the variable 𝑥 has the value 3

Such functions that map variables to values in the domain of 
discourse are called environments
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Interpreting 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦

• In order to interpret 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦 , we need an environment

• Suppose that  

• 𝜂 𝑥 = 3

• 𝜂 𝑦 = 4

• Then the 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦  when evaluated with 𝜂 is true
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Interpreting 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦

• However, if  

• 𝜂2 𝑥 = 3

• 𝜂2 𝑦 = 0

• Then the 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦  when evaluated with 𝜂2is false
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Program State

• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of 
variables that are in computer memory

x := 1

y := 5

x := y * 10

x y
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• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of 
variables that are in computer memory

x := 1

y := 5

x := y * 10

x y

1 
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Program State

• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of 
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Program State

• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of 
variables that are in computer memory

x := 1

y := 5

x := y * 10

x y

1 5

50
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Program State and Environments

• The computer memory used by a program is referred to as the 
program's state.

• The environment function 𝜂 and the computer memory symbolized 
by the table created when we create a hand-trace fill the same role: 
they store variable values
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Programs as State Transformers

• We can think of a program or a program fragment as 
something that transforms its state

x := y * 10  transforms                                       into
x y

1 5

x y

50 5

The program state before 
executing x := y * 10 

The program state after 
executing x := y * 10 
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Programs as State Transformers

• Since environment functions and program state serve the 
same role, we can also think of a program or even a single 
program statement as transforming one environment into 
another

x := y * 10 transforms                                       into

𝜂1 𝑥 = 1
 𝜂1 𝑦 = 5

𝜂1 𝜂2

𝜂2 𝑥 = 50
 𝜂2 𝑦 = 5
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Program Verification

• Let 𝑝 and 𝑞 be statements in predicate logic and let 𝑆 be a program, 
then 𝑆 is partially correct with respect to pre-condition 𝑝 and post-
condition 𝑞 when:

For any environment 𝜂1 in which 𝑝 is true:

If 𝑆 transforms 𝜂1 to 𝜂2 then 𝑞 is true in 𝜂2

𝑝 𝑆 𝑞 denotes that 𝑆 is partially correct with respect to 𝑝 and 𝑞 

𝑝 𝑆 𝑞 is called a partial correctness assertion

13



Program Verification

• Note that 𝑝 𝑆 𝑞 does not require 𝑆 to terminate when started with 
𝜂1. It only requires that if S does terminate when started with a 𝜂1 
that makes 𝑝 true, then the resulting 𝜂2 makes 𝑞 true

14



Program Verification

• Example:

𝑥 = 1{x = x+1}𝑥 = 2

is a true partial correctness assertion
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Program Verification

• Example:

𝑦 = 3{x = 2*y}𝑥 = 6

is a true partial correctness assertion
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Building Programs

• Every assignment statement is a program.

• Larger programs can be built from smaller programs in 3 ways
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Building Programs

1. Sequencing: If 𝑆1 and 𝑆2 are programs, then 𝑆1 𝑆2 is a program

Example: Since x := 0 and y := 1 are each programs, then 

x := 0   y := 1

is a program
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Building Programs

2. Conditional Statements: If 𝑆 is a program and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is a 
program test, then

if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then
𝑆

end-if

is a program
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Building Programs

2. Conditional Statements example:

if x > 0 then

x := x+1

end-if

is a program
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Building Programs

3. While loop: If 𝑆 is a program and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is a program test, then

while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
𝑆

end-while

is a program
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Building Programs

3. While Loop example:

while x > 0

y := y + x

x := x – 1

end-while

is a program
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Rules of Inference

• For each type of program, there is a rule that guides us in creating 
partial correctness assertions from simpler partial correctness 
assertions
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Rules of Inference

1. Sequencing

If 𝑝 {𝑆1} 𝑞 and 𝑞 {𝑆2} 𝑟 are true partial correctness assertions, then 

𝑝 {𝑆1 𝑆2} 𝑟 is a true partial correctness assertion 

  

𝑝 {𝑆1} 𝑞         𝑞 {𝑆2} 𝑟     

𝑝 {𝑆1 𝑆2} 𝑟
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Rules of Inference

1. Sequencing example:

  

𝑦 = 2 {x = y+1} 𝑥 = 3          𝑥 = 3 {y = x+1} 𝑦 = 4 

𝑦 = 2 {x = y+1  y = x+1} 𝑦 = 4
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Rules of Inference

2. Conditional Statement

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑞

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 end-if} 𝑞
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Rules of Inference

2. Conditional Statement

  

If 𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 is a true partial correctness assertions and 
𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑞 is a true in all environments 𝜂, then 𝑝 {if 

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1} 𝑞 is a true partial correctness assertion 

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑞

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 end-if} 𝑞
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Rules of Inference

2. Conditional Statement example

  

𝐓𝐫𝐮𝐞 ∧ 𝑥 < 0 {x = -x} 𝑥 ≥ 0 𝐓𝐫𝐮𝐞 ∧ ¬𝑥 < 0 → 𝑥 ≥ 0

𝐓𝐫𝐮𝐞 {if x < 0 then x = -x end-if} 𝑥 ≥ 0
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Rules of Inference

2. Conditional Statement with Else

  

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  {𝑆2} 𝑞 

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 else 𝑆2 end-if} 𝑞
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Rules of Inference

2. Conditional Statement with Else

  

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  {𝑆2} 𝑞 

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 else 𝑆2 end-if} 𝑞

If 𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 and  𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  {𝑆2} 𝑞 are true 
partial correctness assertions, then 

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 else 𝑆2 end-if} 𝑞 is a true partial 
correctness assertion 
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Rules of Inference

3. While Loop

𝑝 is called a loop invariant

  

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑝

𝑝 {while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆1 end-while} ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑝
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Rules of Inference

3. While Loop

If 𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑝 is a true partial correctness assertions, then 𝑝 {while 
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆1 end-while} ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑝 is a true partial correctness 
assertion 

  

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑝

𝑝 {while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆1 end-while} ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑝
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Rules of Inference

3. While loop example

  

𝑥 + 𝑦 = 𝑧 ∧ ¬𝑥 = 0   {x=x-1; y=y+1 }   𝑥 + 𝑦 = 𝑧

𝑥 + 𝑦 = 𝑧  {while (¬x=0) x:=x-1 y:=y+1 end-while}  ¬¬𝑥 = 0 ∧ 𝑥 + 𝑦 = 𝑧
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Rules of Inference

3. While loop example

  

𝑥 + 𝑦 = 𝑧 ∧ ¬𝑥 = 0   {x=x-1; y=y+1 }   𝑥 + 𝑦 = 𝑧

𝑥 + 𝑦 = 𝑧  {while (¬x=0) x:=x-1 y:=y+1 end-while}  ¬¬𝑥 = 0 ∧ 𝑥 + 𝑦 = 𝑧

What happens if initially 𝑥 < 0?
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Loop Invariants

• A first attempt at creating a loop invariant

• Start with a hand trace and examine how the variables change

• In general, x+y is a constant, i.e. x+y=c

while ¬x=0
  x := x-1

  y := y+1

end-while

x y

3 0

2 1

1 2

0 3
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Loop Invariants

• Another example

• In general, x = im

x := 0;

i := 0;

while i < a
 x := x + m

  i := i + 1

end-while

x i

0 0

m 1

m+m 2

m+m+m 3

⋮ ⋮
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Loop Invariants and Mathematical Induction

• Prove ∀𝑛 𝑃(𝑛) by mathematical induction on the natural numbers 
where 𝑃(𝑛) is

After 𝑛 iterations of the loop, 𝑥 = 𝑖𝑚

1. Base case: 𝑛 = 0

After 0 iterations, 𝑥 = 0 and 𝑖 =  0, hence 𝑥 = 𝑖𝑚

x := 0;

i := 0;

while i < a
  x := x + m

  i := i + 1

end-while
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Loop Invariants and Mathematical Induction

2. Induction step:

Let 𝑥𝑘 and 𝑖𝑘  denote the values of program variables x and i after 𝑘 iterations

1. Assume after 𝑘 iterations, 𝑥𝑘 = 𝑖𝑘𝑚

2. After the 𝑘 + 1st iteration, 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 and 
𝑖𝑘+1 = 𝑖𝑘 + 1

3. 𝑥𝑘+1 = 𝑖𝑘𝑚 + 𝑚 = 𝑖𝑘 + 1 𝑚 = 𝑖𝑘+1𝑚

4. After 𝑘 + 1 iterations 𝑥𝑘+1 = 𝑖𝑘+1𝑚

x := 0;

i := 0;

while i < a
  x := x + m

  i := i + 1

end-while
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