
Section 8.7
Loop Invariants

1

Interpreting Predicate Logic Statements

• Consider the following statement in predicate logic where the domain
of discourse is the natural numbers:

𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦

• What is needed in order to determine the truth value of the
statement?

• We need the values of each variable that occurs in the statement

2

Environment Functions

• In order to know the values of variables, we use a function that takes
variable names and returns values in our domain of discourse, the
natural numbers, 𝑵. If 𝑉 is the set of variables, then the function

𝜂: 𝑉 → 𝑵

So if 𝜂 𝑥 = 3, then the variable 𝑥 has the value 3

Such functions that map variables to values in the domain of
discourse are called environments

3

Interpreting 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦

• In order to interpret 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦 , we need an environment

• Suppose that

• 𝜂 𝑥 = 3

• 𝜂 𝑦 = 4

• Then the 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦 when evaluated with 𝜂 is true

4

Interpreting 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦

• However, if

• 𝜂2 𝑥 = 3

• 𝜂2 𝑦 = 0

• Then the 𝑥 = 𝑦 ∨ 𝑥 + 1 = 𝑦 when evaluated with 𝜂2is false

5

Program State

• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of
variables that are in computer memory

x := 1

y := 5

x := y * 10

x y

6

Program State

• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of
variables that are in computer memory

x := 1

y := 5

x := y * 10

x y

1

7

Program State

• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of
variables that are in computer memory

x := 1

y := 5

x := y * 10

x y

1 5

8

Program State

• A similar concept applies to computer programs

• When we hand trace a program, we write down the values of
variables that are in computer memory

x := 1

y := 5

x := y * 10

x y

1 5

50

9

Program State and Environments

• The computer memory used by a program is referred to as the
program's state.

• The environment function 𝜂 and the computer memory symbolized
by the table created when we create a hand-trace fill the same role:
they store variable values

10

Programs as State Transformers

• We can think of a program or a program fragment as
something that transforms its state

x := y * 10 transforms into
x y

1 5

x y

50 5

The program state before
executing x := y * 10

The program state after
executing x := y * 10

11

Programs as State Transformers

• Since environment functions and program state serve the
same role, we can also think of a program or even a single
program statement as transforming one environment into
another

x := y * 10 transforms into

𝜂1 𝑥 = 1
 𝜂1 𝑦 = 5

𝜂1 𝜂2

𝜂2 𝑥 = 50
 𝜂2 𝑦 = 5

12

Program Verification

• Let 𝑝 and 𝑞 be statements in predicate logic and let 𝑆 be a program,
then 𝑆 is partially correct with respect to pre-condition 𝑝 and post-
condition 𝑞 when:

For any environment 𝜂1 in which 𝑝 is true:

If 𝑆 transforms 𝜂1 to 𝜂2 then 𝑞 is true in 𝜂2

𝑝 𝑆 𝑞 denotes that 𝑆 is partially correct with respect to 𝑝 and 𝑞

𝑝 𝑆 𝑞 is called a partial correctness assertion

13

Program Verification

• Note that 𝑝 𝑆 𝑞 does not require 𝑆 to terminate when started with
𝜂1. It only requires that if S does terminate when started with a 𝜂1
that makes 𝑝 true, then the resulting 𝜂2 makes 𝑞 true

14

Program Verification

• Example:

𝑥 = 1{x = x+1}𝑥 = 2

is a true partial correctness assertion

15

Program Verification

• Example:

𝑦 = 3{x = 2*y}𝑥 = 6

is a true partial correctness assertion

16

Building Programs

• Every assignment statement is a program.

• Larger programs can be built from smaller programs in 3 ways

17

Building Programs

1. Sequencing: If 𝑆1 and 𝑆2 are programs, then 𝑆1 𝑆2 is a program

Example: Since x := 0 and y := 1 are each programs, then

x := 0 y := 1

is a program

18

Building Programs

2. Conditional Statements: If 𝑆 is a program and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is a
program test, then

if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then
𝑆

end-if

is a program

19

Building Programs

2. Conditional Statements example:

if x > 0 then

x := x+1

end-if

is a program

20

Building Programs

3. While loop: If 𝑆 is a program and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is a program test, then

while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
𝑆

end-while

is a program

21

Building Programs

3. While Loop example:

while x > 0

y := y + x

x := x – 1

end-while

is a program

22

Rules of Inference

• For each type of program, there is a rule that guides us in creating
partial correctness assertions from simpler partial correctness
assertions

23

Rules of Inference

1. Sequencing

If 𝑝 {𝑆1} 𝑞 and 𝑞 {𝑆2} 𝑟 are true partial correctness assertions, then

𝑝 {𝑆1 𝑆2} 𝑟 is a true partial correctness assertion

𝑝 {𝑆1} 𝑞 𝑞 {𝑆2} 𝑟

𝑝 {𝑆1 𝑆2} 𝑟

24

Rules of Inference

1. Sequencing example:

𝑦 = 2 {x = y+1} 𝑥 = 3 𝑥 = 3 {y = x+1} 𝑦 = 4

𝑦 = 2 {x = y+1 y = x+1} 𝑦 = 4

25

Rules of Inference

2. Conditional Statement

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑞

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 end-if} 𝑞

26

Rules of Inference

2. Conditional Statement

If 𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 is a true partial correctness assertions and
𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑞 is a true in all environments 𝜂, then 𝑝 {if

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1} 𝑞 is a true partial correctness assertion

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝑞

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 end-if} 𝑞

27

Rules of Inference

2. Conditional Statement example

𝐓𝐫𝐮𝐞 ∧ 𝑥 < 0 {x = -x} 𝑥 ≥ 0 𝐓𝐫𝐮𝐞 ∧ ¬𝑥 < 0 → 𝑥 ≥ 0

𝐓𝐫𝐮𝐞 {if x < 0 then x = -x end-if} 𝑥 ≥ 0

28

Rules of Inference

2. Conditional Statement with Else

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆2} 𝑞

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 else 𝑆2 end-if} 𝑞

29

Rules of Inference

2. Conditional Statement with Else

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆2} 𝑞

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 else 𝑆2 end-if} 𝑞

If 𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑞 and 𝑝 ∧ ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆2} 𝑞 are true
partial correctness assertions, then

𝑝 {if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then 𝑆1 else 𝑆2 end-if} 𝑞 is a true partial
correctness assertion

30

Rules of Inference

3. While Loop

𝑝 is called a loop invariant

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑝

𝑝 {while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆1 end-while} ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑝

31

Rules of Inference

3. While Loop

If 𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑝 is a true partial correctness assertions, then 𝑝 {while
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆1 end-while} ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑝 is a true partial correctness
assertion

𝑝 ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑆1} 𝑝

𝑝 {while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆1 end-while} ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑝

32

Rules of Inference

3. While loop example

𝑥 + 𝑦 = 𝑧 ∧ ¬𝑥 = 0 {x=x-1; y=y+1 } 𝑥 + 𝑦 = 𝑧

𝑥 + 𝑦 = 𝑧 {while (¬x=0) x:=x-1 y:=y+1 end-while} ¬¬𝑥 = 0 ∧ 𝑥 + 𝑦 = 𝑧

33

Rules of Inference

3. While loop example

𝑥 + 𝑦 = 𝑧 ∧ ¬𝑥 = 0 {x=x-1; y=y+1 } 𝑥 + 𝑦 = 𝑧

𝑥 + 𝑦 = 𝑧 {while (¬x=0) x:=x-1 y:=y+1 end-while} ¬¬𝑥 = 0 ∧ 𝑥 + 𝑦 = 𝑧

What happens if initially 𝑥 < 0?

34

Loop Invariants

• A first attempt at creating a loop invariant

• Start with a hand trace and examine how the variables change

• In general, x+y is a constant, i.e. x+y=c

while ¬x=0
 x := x-1

 y := y+1

end-while

x y

3 0

2 1

1 2

0 3

35

Loop Invariants

• Another example

• In general, x = im

x := 0;

i := 0;

while i < a
 x := x + m

 i := i + 1

end-while

x i

0 0

m 1

m+m 2

m+m+m 3

⋮ ⋮

36

Loop Invariants and Mathematical Induction

• Prove ∀𝑛 𝑃(𝑛) by mathematical induction on the natural numbers
where 𝑃(𝑛) is

After 𝑛 iterations of the loop, 𝑥 = 𝑖𝑚

1. Base case: 𝑛 = 0

After 0 iterations, 𝑥 = 0 and 𝑖 = 0, hence 𝑥 = 𝑖𝑚

x := 0;

i := 0;

while i < a
 x := x + m

 i := i + 1

end-while

37

Loop Invariants and Mathematical Induction

2. Induction step:

Let 𝑥𝑘 and 𝑖𝑘 denote the values of program variables x and i after 𝑘 iterations

1. Assume after 𝑘 iterations, 𝑥𝑘 = 𝑖𝑘𝑚

2. After the 𝑘 + 1st iteration, 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 and
𝑖𝑘+1 = 𝑖𝑘 + 1

3. 𝑥𝑘+1 = 𝑖𝑘𝑚 + 𝑚 = 𝑖𝑘 + 1 𝑚 = 𝑖𝑘+1𝑚

4. After 𝑘 + 1 iterations 𝑥𝑘+1 = 𝑖𝑘+1𝑚

x := 0;

i := 0;

while i < a
 x := x + m

 i := i + 1

end-while

38

Loop Invariants and Mathematical Induction

2. Induction step:

Let 𝑥𝑘 and 𝑖𝑘 denote the values of program variables x and i after 𝑘 iterations

1. Assume after 𝑘 iterations, 𝑥𝑘 = 𝑖𝑘𝑚

2. After the 𝑘 + 1st iteration, 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 and
𝑖𝑘+1 = 𝑖𝑘 + 1

3. 𝑥𝑘+1 = 𝑖𝑘𝑚 + 𝑚 = 𝑖𝑘 + 1 𝑚 = 𝑖𝑘+1𝑚

4. After 𝑘 + 1 iterations 𝑥𝑘+1 = 𝑖𝑘+1𝑚

x := 0;

i := 0;

while i < a
 x := x + m

 i := i + 1

end-while

39

Loop Invariants and Mathematical Induction

2. Induction step:

Let 𝑥𝑘 and 𝑖𝑘 denote the values of program variables x and i after 𝑘 iterations

1. Assume after 𝑘 iterations, 𝑥𝑘 = 𝑖𝑘𝑚

2. After the 𝑘 + 1st iteration, 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 and
𝑖𝑘+1 = 𝑖𝑘 + 1

3. 𝑥𝑘+1 = 𝑖𝑘𝑚 + 𝑚 = 𝑖𝑘 + 1 𝑚 = 𝑖𝑘+1𝑚

4. After 𝑘 + 1 iterations 𝑥𝑘+1 = 𝑖𝑘+1𝑚

x := 0;

i := 0;

while i < a
 x := x + m

 i := i + 1

end-while

40

Loop Invariants and Mathematical Induction

2. Induction step:

Let 𝑥𝑘 and 𝑖𝑘 denote the values of program variables x and i after 𝑘 iterations

1. Assume after 𝑘 iterations, 𝑥𝑘 = 𝑖𝑘𝑚

2. After the 𝑘 + 1st iteration, 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 and
𝑖𝑘+1 = 𝑖𝑘 + 1

3. 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 = 𝑖𝑘𝑚 + 𝑚 = 𝑖𝑘 + 1 𝑚 = 𝑖𝑘+1𝑚

4. After 𝑘 + 1 iterations 𝑥𝑘+1 = 𝑖𝑘+1𝑚

x := 0;

i := 0;

while i < a
 x := x + m

 i := i + 1

end-while

41

Loop Invariants and Mathematical Induction

2. Induction step:

Let 𝑥𝑘 and 𝑖𝑘 denote the values of program variables x and i after 𝑘 iterations

1. Assume after 𝑘 iterations, 𝑥𝑘 = 𝑖𝑘𝑚

2. After the 𝑘 + 1st iteration, 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 and
𝑖𝑘+1 = 𝑖𝑘 + 1

3. 𝑥𝑘+1 = 𝑥𝑘 + 𝑚 = 𝑖𝑘𝑚 + 𝑚 = 𝑖𝑘 + 1 𝑚 = 𝑖𝑘+1𝑚

4. After 𝑘 + 1 iterations 𝑥𝑘+1 = 𝑖𝑘+1𝑚

x := 0;

i := 0;

while i < a
 x := x + m

 i := i + 1

end-while

42

	Slide 1: Section 8.7 Loop Invariants
	Slide 2: Interpreting Predicate Logic Statements
	Slide 3: Environment Functions
	Slide 4: Interpreting open paren x equals y , close paren logical or open paren x plus 1 equals y , close paren
	Slide 5: Interpreting open paren x equals y , close paren logical or open paren x plus 1 equals y , close paren
	Slide 6: Program State
	Slide 7: Program State
	Slide 8: Program State
	Slide 9: Program State
	Slide 10: Program State and Environments
	Slide 11: Programs as State Transformers
	Slide 12: Programs as State Transformers
	Slide 13: Program Verification
	Slide 14: Program Verification
	Slide 15: Program Verification
	Slide 16: Program Verification
	Slide 17: Building Programs
	Slide 18: Building Programs
	Slide 19: Building Programs
	Slide 20: Building Programs
	Slide 21: Building Programs
	Slide 22: Building Programs
	Slide 23: Rules of Inference
	Slide 24: Rules of Inference
	Slide 25: Rules of Inference
	Slide 26: Rules of Inference
	Slide 27: Rules of Inference
	Slide 28: Rules of Inference
	Slide 29: Rules of Inference
	Slide 30: Rules of Inference
	Slide 31: Rules of Inference
	Slide 32: Rules of Inference
	Slide 33: Rules of Inference
	Slide 34: Rules of Inference
	Slide 35: Loop Invariants
	Slide 36: Loop Invariants
	Slide 37: Loop Invariants and Mathematical Induction
	Slide 38: Loop Invariants and Mathematical Induction
	Slide 39: Loop Invariants and Mathematical Induction
	Slide 40: Loop Invariants and Mathematical Induction
	Slide 41: Loop Invariants and Mathematical Induction
	Slide 42: Loop Invariants and Mathematical Induction

