
Section 8.8
Recursive Definitions

1

Arithmetic Progressions

• Recall from section 2.4 that an arithmetic progression is a sequence
of the form:

𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ 𝑎 + 𝑛𝑑, ⋯

• For example, the series:

−1, 3, 7, 11, ⋯

is an arithmetic progression where 𝑎 = −1 and 𝑑 = 4

2

Arithmetic Progressions

• For the arithmetic progression:

−1, 3, 7, 11, ⋯

• Given any element of the sequence, it is a simple matter to produce
the next element in the sequence by adding 4 to it

• This rule can be used to calculate any element of the sequence except
for the first element: -1

3

Recursive Functions

• We can then create a function to compute the 𝑛th element of

−1, 3, 7, 11, ⋯

by giving two rules:

1. 𝑓 𝑛 = −1 if 𝑛 = 0

2. 𝑓 𝑛 = 𝑓 𝑛 − 1 + 4 if 𝑛 > 0

Note that the definition of 𝑓 uses 𝑓. This is called recursion, and 𝑓 is
a recursive function

4

Recursive Functions

• Instead of using 𝑛 > 0 as a case for an argument of 𝑓, it is common to
express the argument as 𝑛 + 1, because if 𝑛 is a natural number, then
𝑛 + 1 > 0

5

𝑓 0 = −1 Base case

𝑓 𝑛 + 1 = 4 + 𝑓 𝑛 Recursive case

Recursive Functions

• Examples of computing using the recursive function 𝑓

6

𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3

Recursive Functions

• Examples of computing using the recursive function 𝑓

7

𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3

Recursive Functions

• Examples of computing using the recursive function 𝑓

8

𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3

Recursive Functions

• Examples of computing using the recursive function 𝑓

9

𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3

Recursive Functions

• Examples of computing using the recursive function 𝑓

10

𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3

Recursive Functions

• Examples of computing using the recursive function 𝑓

11

𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7

Recursive Functions

• Examples of computing using the recursive function 𝑓

12

𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7

Recursive Functions

• Examples of computing using the recursive function 𝑓

13

𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7

Recursive Functions

• Examples of computing using the recursive function 𝑓

14

𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7

Recursive Functions

• Examples of computing using the recursive function 𝑓

15

𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7

Recursive Functions

• Examples of computing the recursive function 𝑓

16

𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19

Recursive Functions

• Examples of computing the recursive function 𝑓

17

𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19

Recursive Functions

• Examples of computing the recursive function 𝑓

18

𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19

Recursive Functions

• Examples of computing the recursive function 𝑓

19

𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19

Recursive Functions

• Examples of computing the recursive function 𝑓

20

𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19

Recursive Functions

• Examples of computing the recursive function 𝑓

21

𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19

Recursive Functions

• Examples of computing the recursive function 𝑓

22

𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

• The underlying sequence is

𝑎0, 𝑎1, 𝑎2, ⋯

• Given any number in the sequence, multiply it by 𝑎 to get the next
number in the sequence

• The first number in the sequence is 1

23

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

𝑓 0 = 1

𝑓 𝑛 + 1 = 𝑎 ∙ 𝑓(𝑛)

24

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

25

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

26

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

27

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

28

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

29

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4

Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a
real number and 𝑛 is a natural number

30

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

• The underlying sequence of sums is

0, 0 + 1, 0 + 1 + 2, ⋯

• Given the 𝑛th sum in the sequence, add 𝑛 + 1 to get the next sum in
the sequence

• The first, 0th, sum in the sequence is 0

31

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

𝑓 0 = 0

𝑓 𝑛 + 1 = 𝑛 + 1 + 𝑓(𝑛)

32

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

33

𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

34

𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

35

𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

36

𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

37

𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10

Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛

is a natural number

38

𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

• Note that 0! = 1

• The underlying sequence of products is:

1, 1 ⋅ 1, 1 ⋅ 1 ⋅ 2, 1 ⋅ 1 ⋅ 2 ⋅ 3, ⋯

• Given the 𝑛th product in the sequence, multiply it by 𝑛 + 1 to get the
next product in the sequence

• The first, 0th, product in the sequence is 1

39

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

𝑓 0 = 1

𝑓 𝑛 + 1 = 𝑓(𝑛) ⋅ (𝑛 + 1)

40

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

41

𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

42

𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

43

𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

44

𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

45

𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24

Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial:
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

46

𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24

The Fibonacci Sequence

• The Fibonacci sequence is

0, 1, 1, 2, 3, 5, 8, 13, ⋯

47

The Fibonacci Sequence

• The Fibonacci sequence is

0, 1, 1, 2, 3, 5, 8, 13, ⋯

The first two numbers of the sequence are 0 and 1. Each other
number in the sequence is the sum of its two previous numbers in
the sequence

48

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

𝑓(0) = 0

𝑓(1) = 1

𝑓(𝑛 + 2) = 𝑓(𝑛) + 𝑓(𝑛 + 1)

49

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

50

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

51

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

52

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

53

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

54

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

55

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

56

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

57

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

58

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

59

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3

Recursively Defined Sets

• Recursively defined sets use recursion to specify the elements in a set

1. Base elements of the set are explicitly defined

2. A recursive rule is given to define additional elements in the set

• Recursively defined sets are also known as inductively defined sets

60

Recursively Defined Sets

• Example: A recursive definition of 𝑵, the set of natural numbers

1. 0 ∈ 𝑵

2. If 𝑥 ∈ 𝑵, then 𝑥 + 1 ∈ 𝑵

3. Nothing else is in 𝑵

61

Recursively Defined Sets

• Example 5: A recursive definition of a subset 𝑆 of natural numbers

1. 3 ∈ 𝑆

2. If 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, then 𝑥 + 𝑦 ∈ 𝑆

3. Nothing else is in S

62

Recursively Defined Sets

• Example: A recursive definition of the set of properly nested
parentheses, 𝑃

1. () ∈ 𝑃

2. If 𝑢 ∈ 𝑃 and 𝑣 ∈ 𝑃, then (𝑢) ∈ 𝑃 and 𝑢𝑣 ∈ 𝑃

3. Nothing else is in 𝑃

63

Recursively Defined Set of Binary Strings

• The set of binary strings of any finite, non-negative length, 𝐵∗ has a
recursive definition

1. λ ∈ 𝐵∗ where λ is the empty string

2. If 𝑠 ∈ 𝐵∗, then s0 ∈ 𝐵∗ and s1 ∈ 𝐵∗

3. Nothing else is in 𝐵∗

64

Recursively Defined Set of Strings

• Some members of 𝐵∗

• 𝜆 ∈ 𝐵∗

• 𝜆0 = 0, so 0 ∈ 𝐵∗

• 𝜆1 = 1, so 1 ∈ 𝐵∗

• 00 ∈ 𝐵∗

• 10 ∈ 𝐵∗

• 01 ∈ 𝐵∗

• 11 ∈ 𝐵∗

65

Recursive Functions on Binary Strings

• Let ⋅ : 𝐵∗ → 𝑵 be a function that recursively computes the length of
a string

• Note that ⋅ is a function that is called by replacing the dot with an argument

𝜆 = 0

𝑠0 = 1 + 𝑠

𝑠1 = 1 + 𝑠

66

Recursive Functions on Strings

67

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4

Recursive Functions on Strings

68

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4

Recursive Functions on Strings

69

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4

Recursive Functions on Strings

70

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 0

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4

Recursive Functions on Strings

71

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4

Recursive Functions on Strings

72

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4
]\\

Recursive Functions on Strings

• Compare the recursive definition of 𝐵∗ to the recursive definition of
⋅ : 𝐵∗ → 𝑵

73

]\\

λ ∈ 𝐵∗ 𝜆 = 0

s0 ∈ 𝐵∗ if 𝑠 ∈ 𝐵∗ 𝑠0 = 1 + 𝑠

s1 ∈ 𝐵∗ if 𝑠 ∈ 𝐵∗ 𝑠1 = 1 + 𝑠

Counting Digits

• Example: Define a recursive function that counts the number of digits
in a natural number

• First attempt

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 𝑛 + 1 = ? ? ?

74

Counting Digits

• Consider a different definition of the natural numbers

1. If 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 𝑑 ∈ 𝑵

2. If 𝑛 ∈ 𝑵 and 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 10𝑛 + 𝑑 ∈ 𝑵

75

Counting Digits

• Consider a different definition of the natural numbers

1. If 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 𝑑 ∈ 𝑵

2. If 𝑛 ∈ 𝑵 and 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 10𝑛 + 𝑑 ∈ 𝑵

Examples:

4 ∈ 𝑵

45 ∈ 𝑵

451 ∈ 𝑵

76

Counting Digits

• Consider a different definition of the natural numbers

1. If 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 𝑑 ∈ 𝑵

2. If 𝑛 ∈ 𝑵 and 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 10𝑛 + 𝑑 ∈ 𝑵

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

77

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1

Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3

78

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1

Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3

79

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1

Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3

80

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1

Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3

81

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1

Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3

82

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1

Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

Note that 𝑛 =
10𝑛+𝑑

10

83

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1

Counting Digits

• Rewrite as a function in pseudocode

• Name: length

• Input: a natural number 𝑛

• Output: The number of digits in 𝑛

if n <= 9

 return 1

else

 return 1 + length(floor(n/10))

end-if

84

	Slide 1: Section 8.8 Recursive Definitions
	Slide 2: Arithmetic Progressions
	Slide 3: Arithmetic Progressions
	Slide 4: Recursive Functions
	Slide 5: Recursive Functions
	Slide 6: Recursive Functions
	Slide 7: Recursive Functions
	Slide 8: Recursive Functions
	Slide 9: Recursive Functions
	Slide 10: Recursive Functions
	Slide 11: Recursive Functions
	Slide 12: Recursive Functions
	Slide 13: Recursive Functions
	Slide 14: Recursive Functions
	Slide 15: Recursive Functions
	Slide 16: Recursive Functions
	Slide 17: Recursive Functions
	Slide 18: Recursive Functions
	Slide 19: Recursive Functions
	Slide 20: Recursive Functions
	Slide 21: Recursive Functions
	Slide 22: Recursive Functions
	Slide 23: Recursive Functions
	Slide 24: Recursive Functions
	Slide 25: Recursive Functions
	Slide 26: Recursive Functions
	Slide 27: Recursive Functions
	Slide 28: Recursive Functions
	Slide 29: Recursive Functions
	Slide 30: Recursive Functions
	Slide 31: Recursive Functions
	Slide 32: Recursive Functions
	Slide 33: Recursive Functions
	Slide 34: Recursive Functions
	Slide 35: Recursive Functions
	Slide 36: Recursive Functions
	Slide 37: Recursive Functions
	Slide 38: Recursive Functions
	Slide 39: Recursive Functions
	Slide 40: Recursive Functions
	Slide 41: Recursive Functions
	Slide 42: Recursive Functions
	Slide 43: Recursive Functions
	Slide 44: Recursive Functions
	Slide 45: Recursive Functions
	Slide 46: Recursive Functions
	Slide 47: The Fibonacci Sequence
	Slide 48: The Fibonacci Sequence
	Slide 49: The Fibonacci Sequence
	Slide 50: The Fibonacci Sequence
	Slide 51: The Fibonacci Sequence
	Slide 52: The Fibonacci Sequence
	Slide 53: The Fibonacci Sequence
	Slide 54: The Fibonacci Sequence
	Slide 55: The Fibonacci Sequence
	Slide 56: The Fibonacci Sequence
	Slide 57: The Fibonacci Sequence
	Slide 58: The Fibonacci Sequence
	Slide 59: The Fibonacci Sequence
	Slide 60: Recursively Defined Sets
	Slide 61: Recursively Defined Sets
	Slide 62: Recursively Defined Sets
	Slide 63: Recursively Defined Sets
	Slide 64: Recursively Defined Set of Binary Strings
	Slide 65: Recursively Defined Set of Strings
	Slide 66: Recursive Functions on Binary Strings
	Slide 67: Recursive Functions on Strings
	Slide 68: Recursive Functions on Strings
	Slide 69: Recursive Functions on Strings
	Slide 70: Recursive Functions on Strings
	Slide 71: Recursive Functions on Strings
	Slide 72: Recursive Functions on Strings
	Slide 73: Recursive Functions on Strings
	Slide 74: Counting Digits
	Slide 75: Counting Digits
	Slide 76: Counting Digits
	Slide 77: Counting Digits
	Slide 78: Counting Digits
	Slide 79: Counting Digits
	Slide 80: Counting Digits
	Slide 81: Counting Digits
	Slide 82: Counting Digits
	Slide 83: Counting Digits
	Slide 84: Counting Digits

