
Section 8.8
Recursive Definitions
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Arithmetic Progressions

• Recall from section 2.4 that an arithmetic progression is a sequence 
of the form:

𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ 𝑎 + 𝑛𝑑, ⋯

• For example, the series:

−1, 3, 7, 11, ⋯

is an arithmetic progression where 𝑎 = −1 and 𝑑 = 4
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Arithmetic Progressions

• For the arithmetic progression:

−1, 3, 7, 11, ⋯

• Given any element of the sequence, it is a simple matter to produce 
the next element in the sequence by adding 4 to it

• This rule can be used to calculate any element of the sequence except 
for the first element: -1 
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Recursive Functions

• We can then create a function to compute the 𝑛th element of

−1, 3, 7, 11, ⋯

by giving two rules:

1.  𝑓 𝑛 = −1 if 𝑛 = 0

2.  𝑓 𝑛 = 𝑓 𝑛 − 1 + 4 if 𝑛 > 0

Note that the definition of 𝑓 uses 𝑓. This is called recursion, and 𝑓 is 
a recursive function
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Recursive Functions

• Instead of using 𝑛 > 0 as a case for an argument of 𝑓, it is common to 
express the argument as 𝑛 + 1, because if 𝑛 is a natural number, then 
𝑛 + 1 > 0
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𝑓 0 = −1 Base case

𝑓 𝑛 + 1 = 4 + 𝑓 𝑛  Recursive case



Recursive Functions

• Examples of computing using the recursive function 𝑓
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𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3



Recursive Functions

• Examples of computing using the recursive function 𝑓
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𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3
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• Examples of computing using the recursive function 𝑓
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= 3
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• Examples of computing using the recursive function 𝑓
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𝑓(1) = 4 + 𝑓 0
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= 3



Recursive Functions

• Examples of computing using the recursive function 𝑓
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𝑓(0) = −1

𝑓(1) = 4 + 𝑓 0

= 4 + −1

= 3



Recursive Functions

• Examples of computing using the recursive function 𝑓

11

𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7



Recursive Functions

• Examples of computing using the recursive function 𝑓
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𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7



Recursive Functions

• Examples of computing using the recursive function 𝑓
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𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7



Recursive Functions

• Examples of computing using the recursive function 𝑓
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= 4 + 4 + 𝑓 0

= 4 + 4 + −1
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Recursive Functions

• Examples of computing using the recursive function 𝑓
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𝑓(2) = 4 + 𝑓 1

= 4 + 4 + 𝑓 0

= 4 + 4 + −1

= 7



Recursive Functions

• Examples of computing the recursive function 𝑓
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𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19



Recursive Functions

• Examples of computing the recursive function 𝑓
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𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19
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• Examples of computing the recursive function 𝑓
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Recursive Functions

• Examples of computing the recursive function 𝑓
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Recursive Functions

• Examples of computing the recursive function 𝑓
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Recursive Functions

• Examples of computing the recursive function 𝑓
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𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)
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Recursive Functions

• Examples of computing the recursive function 𝑓
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𝑓(5) = 4 + 𝑓 4

= 4 + 4 + 𝑓 3

= 4 + 4 + 4 + 𝑓(2)

= 4 + 4 + 4 + 4 + 𝑓(1)

= 4 + 4 + 4 + 4 + 4 + 𝑓(0)

= 4 + 4 + 4 + 4 + 4 + −1

= 19



Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number

• The underlying sequence is

𝑎0, 𝑎1, 𝑎2, ⋯

• Given any number in the sequence, multiply it by 𝑎 to get the next 
number in the sequence

• The first number in the sequence is 1
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Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number

𝑓 0 = 1

𝑓 𝑛 + 1 = 𝑎 ∙ 𝑓(𝑛)
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Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number

25

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4



Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number
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𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4



Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number
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𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4



Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number
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𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4



Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number

29

𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4



Recursive Functions

• Example 2: Define a recursive function that computes 𝑎𝑛 where a is a 
real number and 𝑛 is a natural number
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𝑓(4) = 𝑎 ⋅ 𝑓(3)

= 𝑎 ⋅ 𝑎 ⋅ 𝑓(2)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(1)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑓(0)

= 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ 1

= 𝑎4



Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛 

is a natural number

• The underlying sequence of sums is

0, 0 + 1, 0 + 1 + 2, ⋯

• Given the 𝑛th sum in the sequence, add 𝑛 + 1 to get the next sum in 
the sequence

• The first, 0th, sum in the sequence is 0
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Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛 

is a natural number

𝑓 0 = 0

𝑓 𝑛 + 1 = 𝑛 + 1 + 𝑓(𝑛)
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Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛 

is a natural number
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𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10



Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛 

is a natural number
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𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0

= 10
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• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛 

is a natural number
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= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)
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Recursive Functions

• Example 3: Define a recursive function that computes σ𝑘=0
𝑛 𝑘 where 𝑛 

is a natural number
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𝑓(4) = 4 + 𝑓(3)

= 4 + 3 + 𝑓(2)

= 4 + 3 + 2 + 𝑓(1)

= 4 + 3 + 2 + 1 + 𝑓(0)

= 4 + 3 + 2 + 1 + 0
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Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial: 
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

• Note that 0! = 1

• The underlying sequence of products is:

1, 1 ⋅ 1, 1 ⋅ 1 ⋅ 2, 1 ⋅ 1 ⋅ 2 ⋅ 3,  ⋯

• Given the 𝑛th product in the sequence, multiply it by 𝑛 + 1 to get the 
next product in the sequence

• The first, 0th, product in the sequence is 1
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Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial: 
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number

𝑓 0 = 1

𝑓 𝑛 + 1 = 𝑓(𝑛) ⋅ (𝑛 + 1)
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Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial: 
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number
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𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24
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Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial: 
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number
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𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4
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Recursive Functions

• Example 4: Define a recursive function that computes 𝑛 factorial: 
𝑛! = 1 ⋅ 2 ⋅ … ⋅ 𝑛 where 𝑛 is a natural number
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𝑓(4) = 𝑓(3) ⋅ 4

= 𝑓(2) ⋅ 3 ⋅ 4

= 𝑓(1) ∙ 2 ∙ 3 ∙ 4

= 𝑓(0) ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 1 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4

= 24



The Fibonacci Sequence

• The Fibonacci sequence is

0, 1, 1, 2, 3, 5, 8, 13, ⋯
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The Fibonacci Sequence

• The Fibonacci sequence is

0, 1, 1, 2, 3, 5, 8, 13, ⋯

The first two numbers of the sequence are 0 and 1.  Each other 
number in the sequence is the sum of its two previous numbers in 
the sequence
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The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

𝑓(0)  = 0

𝑓(1)  = 1

𝑓(𝑛 + 2) = 𝑓(𝑛)  + 𝑓(𝑛 + 1)
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The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence
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𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



The Fibonacci Sequence

• The Fibonacci function computes values in the Fibonacci sequence

59

𝑓(4) = 𝑓(2) + 𝑓(3)

= 𝑓 0 + 𝑓(1) + 𝑓(3)

= 0 + 𝑓(1) + 𝑓(3)

= 0 + 1 + 𝑓(3)

= 0 + 1 + 𝑓 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓(2)

= 0 + 1 + 1 + 𝑓 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 𝑓(1)

= 0 + 1 + 1 + 0 + 1

= 3



Recursively Defined Sets

• Recursively defined sets use recursion to specify the elements in a set

1. Base elements of the set are explicitly defined

2. A recursive rule is given to define additional elements in the set

• Recursively defined sets are also known as inductively defined sets
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Recursively Defined Sets

• Example: A recursive definition of 𝑵, the set of natural numbers

1.  0 ∈ 𝑵

2. If 𝑥 ∈ 𝑵, then 𝑥 + 1 ∈ 𝑵

3. Nothing else is in 𝑵 
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Recursively Defined Sets

• Example 5: A recursive definition of a subset 𝑆 of natural numbers

1.  3 ∈ 𝑆

2.  If 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, then 𝑥 + 𝑦 ∈ 𝑆

3. Nothing else is in S 
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Recursively Defined Sets

• Example: A recursive definition of the set of properly nested 
parentheses, 𝑃

1.  ( ) ∈ 𝑃

2.  If 𝑢 ∈ 𝑃 and 𝑣 ∈ 𝑃, then (𝑢) ∈ 𝑃 and 𝑢𝑣 ∈ 𝑃 

3. Nothing else is in 𝑃 
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Recursively Defined Set of Binary Strings

• The set of binary strings of any finite, non-negative length, 𝐵∗ has a 
recursive definition

1.  λ ∈ 𝐵∗ where λ is the empty string

2.  If 𝑠 ∈ 𝐵∗, then s0 ∈ 𝐵∗ and s1 ∈ 𝐵∗

3. Nothing else is in 𝐵∗
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Recursively Defined Set of Strings

• Some members of 𝐵∗

• 𝜆 ∈ 𝐵∗

• 𝜆0 = 0, so 0 ∈ 𝐵∗

• 𝜆1 = 1, so 1 ∈ 𝐵∗

• 00 ∈ 𝐵∗

• 10 ∈ 𝐵∗

• 01 ∈ 𝐵∗

• 11 ∈ 𝐵∗
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Recursive Functions on Binary Strings

• Let ⋅ : 𝐵∗ → 𝑵 be a function that recursively computes the length of 
a string

• Note that ⋅  is a function that is called by replacing the dot with an argument

𝜆 = 0

𝑠0 = 1 + 𝑠

𝑠1 = 1 + 𝑠
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Recursive Functions on Strings

67

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4



Recursive Functions on Strings

68

0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4



Recursive Functions on Strings
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0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4



Recursive Functions on Strings
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0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 0

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4



Recursive Functions on Strings
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0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4



Recursive Functions on Strings
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0110 = 1 + 011

= 1 + 1 + 01

= 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + λ

= 1 + 1 + 1 + 1 + 0

= 4
]\\



Recursive Functions on Strings

• Compare the recursive definition of 𝐵∗ to the recursive definition of 
⋅ : 𝐵∗ → 𝑵

73

]\\

λ ∈ 𝐵∗ 𝜆 = 0

s0 ∈ 𝐵∗  if 𝑠 ∈ 𝐵∗ 𝑠0 = 1 + 𝑠

s1 ∈ 𝐵∗  if 𝑠 ∈ 𝐵∗ 𝑠1 = 1 + 𝑠



Counting Digits

• Example: Define a recursive function that counts the number of digits 
in a natural number

• First attempt

𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 𝑛 + 1 = ? ? ?
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Counting Digits

• Consider a different definition of the natural numbers

1. If 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 𝑑 ∈ 𝑵

2. If 𝑛 ∈ 𝑵 and 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 10𝑛 + 𝑑 ∈ 𝑵
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Counting Digits

• Consider a different definition of the natural numbers

1. If 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 𝑑 ∈ 𝑵

2. If 𝑛 ∈ 𝑵 and 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 10𝑛 + 𝑑 ∈ 𝑵

Examples:

4 ∈ 𝑵

45 ∈ 𝑵

451 ∈ 𝑵
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Counting Digits

• Consider a different definition of the natural numbers

1. If 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 𝑑 ∈ 𝑵

2. If 𝑛 ∈ 𝑵 and 𝑑 ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , then 10𝑛 + 𝑑 ∈ 𝑵

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)
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𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1



Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3
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𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1



Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3
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𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1



Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3
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𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1



Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3
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𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1



Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ 45

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(4)

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 1 + 1 + 1

𝑙𝑒𝑛𝑔𝑡ℎ 451 = 3
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𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1



Counting Digits

𝑙𝑒𝑛𝑔𝑡ℎ 10𝑛 + 𝑑 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛)

Note that 𝑛 =
10𝑛+𝑑

10
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𝑙𝑒𝑛𝑔𝑡ℎ 0 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 1 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 2 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 3 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 4 = 1

𝑙𝑒𝑛𝑔𝑡ℎ 5 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 6 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 7 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 8 = 1 𝑙𝑒𝑛𝑔𝑡ℎ 9 = 1



Counting Digits

• Rewrite as a function in pseudocode

• Name: length

• Input: a natural number 𝑛

• Output: The number of digits in 𝑛

if n <= 9

  return 1

else

  return 1 + length(floor(n/10))

end-if
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