Section 8.9 Structural Induction

- A recursively defined set provides a pattern for proving properties about it
 - 1. Base case: Prove the property for the base elements of the set
 - 2. Induction step: Prove that if the property holds for elements that are used to construct a new element of the set, then the property is true for the new element

- Example: Recall the definition of the set *S*:
 - 1. $3 \in S$ (3 is a base element)
 - 2. If $x \in S$ and $y \in S$, then $x + y \in S$
 - 3. Nothing else is in S

Prove by structural induction $\forall nP(n)$ where P(n) is:

If $n \in S$, then n is a multiple of 3

Example: Prove by structural induction $\forall nP(n)$ where P(n) is: If $n \in S$, then n is a multiple of 3

1. Base case: $3 \in S$ 3 is a multiple of 3

Example: Prove by structural induction $\forall nP(n)$ where P(n) is: If $n \in S$, then n is a multiple of 3

2. Induction step: Assume $x \in S$ and $y \in S$ and that P(x) and P(y). Prove P(x + y)

Example: Prove by structural induction $\forall nP(n)$ where P(n) is: If $n \in S$, then n is a multiple of 3

2. Induction step: Assume $x \in S$ and $y \in S$ and that P(x) and P(y). Prove P(x + y)

1. Assume $x \in S$, $y \in S$, and x and y are multiples of 3

Example: Prove by structural induction $\forall nP(n)$ where P(n) is: If $n \in S$, then n is a multiple of 3

- 2. Induction step: Assume $x \in S$ and $y \in S$ and that P(x) and P(y). Prove P(x + y)
 - 1. Assume $x \in S$, $y \in S$, and x and y are multiples of 3
 - 2. x = 3i and y = 3j for integers *i* and *j*

Example: Prove by structural induction $\forall nP(n)$ where P(n) is: If $n \in S$, then n is a multiple of 3

- 2. Induction step: Assume $x \in S$ and $y \in S$ and that P(x) and P(y). Prove P(x + y)
 - 1. Assume $x \in S$, $y \in S$, and x and y are multiples of 3
 - 2. x = 3i and y = 3j for integers *i* and *j*
 - 3. x + y = 3i + 3j = 3(i + j)

Example: Prove by structural induction $\forall nP(n)$ where P(n) is: If $n \in S$, then n is a multiple of 3

- 2. Induction step: Assume $x \in S$ and $y \in S$ and that P(x) and P(y). Prove P(x + y)
 - 1. Assume $x \in S$, $y \in S$, and x and y are multiples of 3
 - 2. x = 3i and y = 3j for integers i and j
 - 3. x + y = 3i + 3j = 3(i + j)
 - 4. x + y is a multiple of 3

Well-Formed Formulas in Propositional Logic

- Let V be the set of propositional variables
- *W*, the set of well-formed formulas of propositional logic can be recursively defined as follows
 - 1. If $p \in V$ then $p \in W$
 - 2. If $w_1 \in W$ and $w_2 \in W$, then so are the following:
 - (¬*w*₁),
 - $(w_1 \wedge w_2)$
 - $(w_1 \lor w_2)$
 - $(w_1 \rightarrow w_2)$
 - $(w_1 \leftrightarrow w_2)$

- Example: Prove by structural induction ∀w P(w) where P(w) is:
 If w ∈ W then the w has an equal number of left and right parentheses
 - 1. Base case: $p \in W$ where p is a propositional variable Propositional variables have 0 left and right parentheses

- 2. Induction step: Assume $w_1 \in W$ and $w_2 \in W$ and $P(w_1)$ and $P(w_2)$. Prove $P((\neg w_1)), P((w_1 \land w_2)), P((w_1 \lor w_2)), P((w_1 \rightarrow w_2)), P((w_1 \leftrightarrow w_2)), P((w_1 \leftrightarrow w_2)))$
 - 1. Assume $w_1 \in W$ and $w_2 \in W$ and w_1 and w_2 each have an equal number of left and right parentheses
 - 2. There are 5 ways to use w_1 and w_2 to create a new formula
 - 3. Case 1: $(\neg w_1)$
 - 4. w_1 has the same number of left parentheses as right parentheses
 - 5. $(\neg w_1)$ has the same number of left parentheses as right parentheses

- 2. Induction step continued
 - 6. Cases 2-5: Without loss of generality, consider $(w_1 \land w_2)$

- 2. Induction step continued
 - 6. Cases 2-5: Without loss of generality, consider $(w_1 \land w_2)$
 - 7. w_1 and w_2 each have the same number of left and right parentheses

- 2. Induction step continued
 - 6. Cases 2-5: Without loss of generality, consider $(w_1 \land w_2)$
 - 7. w_1 and w_2 each have the same number of left and right parentheses
 - 8. $w_1 \wedge w_2$ has the same number of left and right parentheses

- 2. Induction step continued
 - 6. Cases 2-5: Without loss of generality, consider $(w_1 \land w_2)$
 - 7. w_1 and w_2 each have the same number of left and right parentheses
 - 8. $w_1 \wedge w_2$ has the same number of left and right parentheses
 - 9. $(w_1 \land w_2)$ has the same number of left and right parentheses

- 2. Induction step continued
 - 6. Cases 2-5: Without loss of generality, consider $(w_1 \land w_2)$
 - 7. w_1 and w_2 each have the same number of left and right parentheses
 - 8. $w_1 \wedge w_2$ has the same number of left and right parentheses
 - 9. $(w_1 \land w_2)$ has the same number of left and right parentheses
 - 10 In all cases, the new formulas have the same number of left and right . parentheses

Define the set *S* as follows:

- 1. $1 \in S$
- 2. 3 ∈ *S*
- 3. If $x \in S$ then $x + 4 \in S$

- Prove by structural induction that each element of S is odd
 - 1. Base cases: 1 and 3
 - 1 is odd and 3 is odd

- Prove by structural induction that each element of S is odd
 - 2. Induction step:
 - 1. Assume $x \in S$ and x is odd
 - 2. x = 2i + 1 for some integer *i*
 - 3. x + 4 = 2i + 1 + 4
 - 4. x + 4 = 2(i + 2) + 1
 - 5. x + 4 is odd

- Prove by structural induction that each element of *S* is odd
 - 2. Induction step: Prove if $x \in S$ and x is odd, then x + 4 is odd

- Prove by structural induction that each element of S is odd
 - 2. Induction step: Prove if $x \in S$ and x is odd, then x + 4 is odd
 - 1. Assume $x \in S$ and x is odd

- Prove by structural induction that each element of S is odd
 - 2. Induction step: Prove if $x \in S$ and x is odd, then x + 4 is odd
 - 1. Assume $x \in S$ and x is odd
 - 2. x = 2i + 1 for some integer *i*

- Prove by structural induction that each element of S is odd
 - 2. Induction step: Prove if $x \in S$ and x is odd, then x + 4 is odd
 - 1. Assume $x \in S$ and x is odd
 - 2. x = 2i + 1 for some integer *i*
 - 3. x + 4 = 2i + 1 + 4

- Prove by structural induction that each element of S is odd
 - 2. Induction step: Prove if $x \in S$ and x is odd, then x + 4 is odd
 - 1. Assume $x \in S$ and x is odd
 - 2. x = 2i + 1 for some integer *i*
 - 3. x + 4 = 2i + 1 + 4
 - 4. x + 4 = 2(i + 2) + 1

- Prove by structural induction that each element of S is odd
 - 2. Induction step: Prove if $x \in S$ and x is odd, then x + 4 is odd
 - 1. Assume $x \in S$ and x is odd
 - 2. x = 2i + 1 for some integer *i*
 - 3. x + 4 = 2i + 1 + 4
 - 4. x + 4 = 2(i + 2) + 1
 - 5. x + 4 is odd