
Application
Programming

Hend Alkittawi

More on Java Classes

Best practices for Creating Java
Classes

BEST PRACTICES FOR CREATING JAVA CLASSES

STYLE METHODS
- getters and setters
- equals()
- toString()

CONSTRUCTORS JAVADOC

- identifier naming
- indentation

- “special” Java
documentation

- Ways to instantiate
objects

STYLE

public class MyClass {

// attributes

 private int intVar;

// methods

public void myMethod(String myString){

 }

}

visibility type class name

return
type

method
name

parameter
type

parameter
name

visibility

type variable namevisibility

METHODS

- The syntax (rules) for declaring a method

visibility returnType methodName(parameterList)

- visibility determines access

- public (all can access) or private (just this class can access)

- returnType is the type of data this method returns

- if nothing is returned, use the keyword void

- methodName starts with a lowercase word

- it uses uppercase for the first letter of each additional word

(this is called “camel case”)

- parameterList is any data we need to pass to the method

- The ordering must be followed exactly

METHODS
- Getter and setter methods are used to get and set the

value of the attributes.
- Getters retrieve the value only

- Setters update the value only

public class Account {

 private double balance;
 private String name;

 public void setBalance(double balance){
 this.balance = balance;
 }
 public double getBalance(){
 return this.balance;
 }
 // add a getter and a setter for name
}

● to use the class and its methods

public static void main(String[] args){
 Account myAccount = new Account();
 myAccount.setBalance(1000.0);
 double balance = myAccount.getBalance();
}

METHODS
- toString() method returns a String representation of objects.

An example of a toString() method for the Account class:

public class Account {
 private double balance;
 private String name;
 public void setBalance(double balance){
 this.balance = balance;
 }
 public double getBalance() {
 return this.balance;
 }
 // … getter and a setter for name
 public String toString() {
 return "Account info: name: " + name
 + " with balance: " + balance;
 }
}

● to use the class and its methods

public static void main(String[] args){
 Account myAccount = new Account();
 myAccount.setName("Sam Adams");
 myAccount.setBalance(1000.0);
 System.out.println(myAccount);
}

METHODS
- equals() method provides a way for users to compare instances

of your object to other instances. This also gives you control

over what is relevant to differentiate your objects.

-public class Account {

 private double balance;
 private String name;

 public void setBalance(double balance) {
 this.balance = balance; }

 public double getBalance() {
 return this.balance; }

 public String toString() {
 return "Account info: name: " + name
 + " with balance: " + balance; }

 public boolean equals(Account account2) {
 return this.getName().equals(account2.getName());}
}

● to use the class and its methods

public static void main(String[] args){
 Account myAccount = new Account();
 Account yourAccount = new Account();
 myAccount.setName(“Mia”);
 myAccount.setBalace(10);
 yourAccount.setName(“Ken”);
 yourAccount.setBalance(100);
 boolean check = myAccount.equals(yourAccount);
}

IMPORTANT

● == is used for primitive types only

○ 2 == 5

● Objects define an object-method called equals()

○ objA.equals(objB);

● Core: Drawing Memory Models with Objects - Memory Models, Scope,

and Starting the Project | Coursera

https://www.coursera.org/learn/object-oriented-java/lecture/gOFlb/core-drawing-memory-models-with-objects
https://www.coursera.org/learn/object-oriented-java/lecture/gOFlb/core-drawing-memory-models-with-objects

public class Account {

 private double balance;
 private String name;

 public void setBalance(double balance) {
 this.balance = balance; }

 public void setName(String name) {
 this.name = name; }

 public double getBalance() {
 return this.balance; }

 public String getName() {
 return this.name; }

 public boolean equals(Account account2) {
 return this.getName().equals(account2.getName());
 }

 public String toString() {
 return "Account info: name: " + name
 + " with balance: " + balance; }
}

public static void main(String[] args){
 Account myAccount = new Account();
 Account yourAccount = new Account();
 myAccount.setName("Mia");
 myAccount.setBalace(10);
 yourAccount.setName("Ken");
 yourAccount.setBalance(100);
 boolean check = myAccount.equals(yourAccount);
}

balance

name

myAccount

balance

name

yourAccount

- Java requires a constructor call for every object that is created.

- The keyword new creates a new object of a specified class by

calling a constructor.

- A constructor is similar to a method but is called implicitly by

the new operator to initialize an object’s instance variables when

the object is created.

- In any class that does not explicitly declare a constructor, the

compiler provides a default constructor (which always has no

parameters).

- When a class has only the default constructor, the class’s

instance variables are initialized to their default value.

CONSTRUCTORS

METHODS
- You can provide your own constructor to specify custom

initialization for objects of your class.

- A constructor must have the same name as the class.

- If you declare a constructor for a class, the compiler will

not create a default constructor that class.

-public class Account {

 private double balance;
 private String name;

 public Account(String name, double balance){
 this.name = name;
 this.balance = balance;
 }
 /* … rest of class … */
}

● to use the class and its methods

public static void main(String[] args){
 Account myAccount = new Account("Sam", 1000);
 Account yourAccount = new Account("Jane", 2000);
}

JAVA GARBAGE COLLECTION

- More than one variable may refer to the same data.

- Java will clear out old data that no variables are referencing

- This is known as garbage collection

- Garbage collection is the process through which Java will

eventually clear out old data that no variables are

referencing.

JAVADOC

- Javadoc comments are delimited between /** and */.

- Javadoc comments enable you to embed program documentation

directly in your programs.

- Javadoc utility program reads Javadoc comments and uses them

to prepare program documentation in HTML web-page format.

/**

* This is a Javadoc comment!

*/

JAVADOC

- Javadoc comments annotations:

- @author: designates the author of the code, belongs in the

class comment

- @param: designates the parameter to a method, belongs in all

method comments which require parameters

- @return: designates the returned value of a method, belongs in

method comments which return values

JAVADOC
/**
* The Account class represents a bank account.
* @author CS3443
*/
public class Account {
 /* attributes here .. a multi-line comment starts with /* .. be careful! */

 /**
 * sets the account balance
 * @param balance, the account balance (double)
 */
 public void setBalance(double balance){
 this.balance = balance;
 }

 /**
 * returns the balance for the account
 * @return double, the account balance
 */
 public double getBalance(){
 return balance;
 }
}

Java
doc

Mult
ilin

e

Comm
ent

Java
doc

JAVADOC

- To generate Javadoc in Eclipse

1. Project > Generate Javadoc

2. Destination: workspace/your_project/doc

3. Next

4. Select all “referenced archives and projects”

5. Finish > Yes To All

6. Open index.html

Project > Generate Javadoc

Destination:workspace/your_project/doc

> Next

Select all

> Finish

Yes To All

Open index.html

CODE DEMO

- Create a Java class
following the best
practices

- Generate Javadocs

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

