
Application
Programming

Hend Alkittawi

OOP Concepts
Introduction to Inheritance in Java

INHERITANCE

- When creating a class rather than declaring completely new members

you can designate that the new class should inherit the members of

an existing class.

- The existing class is called the superclass and the new class is

the subclass.

- With inheritance the instance variables and methods that are the

same for all the classes in the hierarchy are declared in a

superclass.

- In inheritance, a new class is created by acquiring an existing

class’s members and possibly embellishing them with new or

modified capabilities.

public class Animal {

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void eat() {
 System.out.println(getName() +
 " eats food.");
 }
}

public class Dog extends Animal {

 private String breed;

 public String getBreed() {
 return breed;
 }

 public void setBreed(String breed) {
 this.breed = breed;
 }

 public void bark() {
 System.out.println("The dog barks.");
 }
}

public class InheritanceDemo {

 public static void main(String[] args){

 Animal animal = new Animal();
 animal.eat();

 Dog dog = new Dog();
 // setName() is an inherited method
 dog.setName("Buddy");

 // setBreed() is a method of Dog class
 dog.setBreed("Golden Retriever");

 // eat() is an inherited method
 dog.eat();

 // bark() is a method of Dog class
 dog.bark();
 }
}

INHERITANCE

- The direct superclass is the superclass from which the subclass

explicitly inherits.

- An indirect superclass is any class above the direct

superclass in the class hierarchy, which defines the

inheritance relationships among classes.

- In Java, the class hierarchy begins with a class Object which

every class in Java directly or indirectly extends.

- Java supports only single inheritance in which each class is

derived from exactly one direct superclass.

INHERITANCE

- Inheritance and constructors

- Constructors are not inherited, a superclass’s constructors are

still available to be called by subclasses.

- Java requires that the first task of any subclass constructor is to

call its direct superclass’s constructor to ensure that the

instance variables inherited from the superclass are initialized

properly.

- Superclass constructor call syntax: keyword super followed by a

set of parentheses containing the super class constructor arguments

which are you used to initialize the super class instance

variables.

public class Animal {

 private String name;

 public Animal(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void eat() {
 System.out.println(getName() +
 " eats food.");
 }
}

public class Dog extends Animal {

 private String breed;

 public Dog(String name, String breed) {
 super(name);
 this.breed = breed;
 }

 public String getBreed() {
 return breed;
 }

 public void setBreed(String breed) {
 this.breed = breed;
 }

 public void bark() {
 System.out.println("The dog barks.");
 }
}

public class InheritanceDemo {

 public static void main(String[] args){

 Animal animal = new Animal("Hazel");
 animal.eat();

 Dog dog = new Dog("A Name", "A Breed");

 // eat() is an inherited method
 dog.eat();

 // bark() is a method of Dog class
 dog.bark();
 }
}

INHERITANCE
- A subclass can add its own fields and methods; it is more specific than its

superclass.

- A subclass exhibits the behavior of its superclass and can modify these

behaviors so that they operate appropriately for the subclass. A subclass can

customize methods that it inherits from its superclass to do this the

subclass overrides/redefines the superclass method with an appropriate

implementation.

- To override a superclass method in a subclass, the subclass must declare a

method with the same signature as the superclass method.

- When a subclass method overrides an inherited superclass method, the

superclass version of the method can be accessed from the subclass by

preceding the super-class method name with the keyword super and a DOT (.)

separator.

public class Animal {

 private String name;

 public Animal(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void eat() {
 System.out.println(getName() +
 " eats food.");
 }

 @Override
 public String toString() {
 return "Name: " + getName();
 }
}

public class Dog extends Animal {

 private String breed;

 public Dog(String name, String breed) {
 super(name);
 this.breed = breed;
 }

 public String getBreed() {
 return breed;
 }

 public void setBreed(String breed) {
 this.breed = breed;
 }

 public void bark() {
 System.out.println("The dog barks.");
 }

 @Override
 public String toString() {
 return super.toString() + " Breed: "
 + getBreed();
 }
}

public class InheritanceDemo {

 public static void main(String[] args){

 Animal animal = new Animal("Hazel");
 animal.eat();

 Dog dog = new Dog("A Name", "A Breed");
 // eat() is an inherited method
 dog.eat();

 // bark() is a method of Dog class
 dog.bark();

 // toString() in Dog redefines the
 // behavior of toString() in Animal
 String s = dog.toString();
 }
}

PUBLIC, PRIVATE AND PROTECTED KEYWORDS

- A class’s public members are accessible wherever the program

has reference to an object of that class or one of its

subclasses.

- A class’s private members are accessible only within the class

itself.

- Using protected access modifier offers an intermediate level

of access between public and private; a superclass’s protected

members can be accessed by members of that superclass, by

members of its subclasses and by members of other classes in

the same package.

PUBLIC, PRIVATE AND PROTECTED KEYWORDS

- Public members of the superclass become public members of the

subclass and protected members of the superclass become

protected members of the subclass.

- Methods of a subclass cannot directly access private members

of their superclass. Declaring private instance variables

helps you test, debug and correctly modify systems.

package inheritance;
public class Animal {

 private String name;
 public String aString;
 public String publicString;
 protected String protectedString;

 public Animal(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void eat() {
 System.out.println(getName() +
 " eats food.");
 }

 @Override
 public String toString() {
 return "Name: " + getName();
 }

 private void animalMethod() {
 // method body
 }
}

package inheritance;
public class Dog extends Animal {

 private String breed;

 public Dog(String name, String breed) {
 super(name);
 this.breed = breed;
 }

 public String getBreed() {
 return breed;
 }

 public void setBreed(String breed) {
 this.breed = breed;
 }

 public void bark() {
 System.out.println("The dog barks.");
 }

 private void testAccess() {
 // String s0 = name; // invalid
 String s1 = getName(); // indirect access
 String s2 = publicString; // insecure
 String s3 = protectedString; // valid
 }

 @Override
 public String toString() {
 return super.toString() + " Breed: "
 + getBreed();
 }
}

package inheritance;
public class InheritanceDemo {

 public static void main(String[] args){

 Animal animal = new Animal("Hazel");
 animal.eat();
 // animal.animalMethod(); // inavlid
 // animal.bark(); // invalid
 // animal.name = "some string"; // invalid
 animal.publicString = "some string";
 animal.protectedString = "some string";

 Dog dog = new Dog("A Name", "A Breed");
 // eat() is an inherited method
 dog.eat();

 // bark() is a method of Dog class
 dog.bark();

 // toString() in Dog redefines the
 // behavior of toString() in Animal
 String s = dog.toString();

 // dog.name = "some string"; // invalid
 dog.publicString = "some string";
 dog.protectedString = "some string";
 }
}

CODE DEMO

- Create classes to demo
inheritance concepts!

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

