
Application
Programming

Hend Alkittawi

SOLID Principles
Applying SOLID Principles In Object

Oriented Design

WHY SOLID PRINCIPLES?

- Watch this video from the Coursera course Software Development

Processes and Methodologies

- The content for this lecture is based on a series of

papers/book chapters by Robert Martin

- You might find these references useful

- Uncle Bob SOLID principles

- SOLID Design Principles with Java Examples | Clean Code and

Best Practices | Geekific

https://www.coursera.org/lecture/software-processes/why-take-this-course-3TI3R
https://www.youtube.com/watch?v=zHiWqnTWsn4
https://www.youtube.com/watch?v=HoA6aZPR5K0
https://www.youtube.com/watch?v=HoA6aZPR5K0

SYMPTOMS OF ROTTING DESIGNS
- Rigidity

- Difficult to change in even simple ways

- Changes cause a cascade of issues in dependent modules

- Immobility

- Inability to reuse modules

- Fragility

- Tendency for changes to cause problems in many areas

- New problems often in areas with no conceptual relationship to the original

change

- Viscosity

- Viscosity of design → It is harder to make changes that preserve the original

design

- Viscosity of environment → Development environment is slow and inefficient

CHANGING REQUIREMENTS

- Requirements change in a way that was not anticipated by the

original design

- The requirements document is the most volatile document in a

project

- We need to make our designs resilient to changes and protect

them from rotting

- Tree Comic

https://www.google.com/url?sa=i&url=https%3A%2F%2Fslopesoftware.com%2F2020%2F12%2F04%2Fsix-software-development-ideas-that-can-improve-actuarial-work%2F&psig=AOvVaw1iA_Xs3thak3z-qfnE-yG2&ust=1676734963859000&source=images&cd=vfe&ved=0CA8QjRxqFwoTCJCsqtHynP0CFQAAAAAdAAAAABAI

DEPENDENCY MANAGEMENT

- Rot is caused by changes that introduce new and unplanned for

dependencies

- Rigidity, Fragility, Immobility, and Viscosity are directly or

indirectly caused by improper dependencies between software

modules

- To avoid rot, dependencies between modules in an application

must be managed

- This management consists of dependency firewalls across which

dependencies do not propagate

SOLID PRINCIPLES

- SOLID is a way to manage dependencies

- The Single Responsibility Principle (SRP)

- The Open Closed Principle (OCP)

- The Liskov Substitution Principle (LSP)

- The Interface Segregation Principle (ISP)

- The Dependency Inversion Principle (DIP)

SOLID PRINCIPLES

- The Single Responsibility Principle (SRP)

- There should never be more than one reason for a class to

change

- If a class has more than one responsibility, then there will

be more than one reason for it to change

- A class should have one responsibility

- Multiple responsibilities can become coupled

- Changes to one responsibility can impair the class' ability to

meet its other responsibilities

SOLID PRINCIPLES

- The Single Responsibility Principle (SRP)

- An example of how a class that has too many responsibilities

can be split into multiple classes

- If needed, a class can have objects from the other classes

Employee

name
salary

// payroll methods
// hr methods
// DB methods

Employee

name
salary

// pay methods

EmployeeDB

name
salary

// DB methods

EmployeeReport

name
salary

// hr methods

SOLID PRINCIPLES

- The Open Closed Principle (OCP)

- Software entities should be open for extension but closed for

modification

- Design modules that never change

- When requirements change, extend the behavior of a module by

adding new code not by changing code that already works

- Modules that conform to OCP

- Have behaviors that can be extended

- Have source code that does not change

SOLID PRINCIPLES

- The Open Closed Principle (OCP)

- Example for a design that is not closed for modification

public abstract class Shape {
public abstract String getShapeType();

}

public class Circle extends Shape {
private String shapeType = “Circle”;
private double radius;
private Point center;

public String getShapeType(){
return shapeType;

}
}

public class Square extends Shape {
private String shapeType = “Square”;
private double side;
private Point topLeftCorner;

public String getShapeType(){
return shapeType;

}
}

public void drawAllShapes(Shape[] shapes){
for(int i = 0; i < shapes.length; i++){

Shape shape = shape[i];
switch (shape.getShapeType()){

case "Circle":
drawCircle(shape);
break;

case "Square":
drawSquare(shape);
break;

default:
System.out.println("Unknown shape: "

 + shape.getShapeType());
}

}
}

What if we
add more
shapes?

SOLID PRINCIPLES

- The Open Closed Principle (OCP)

- Example how the previous design can be modified to be closed

for modifications
public abstract class Shape {

public abstract void draw();
}

public class Circle extends Shape {
private double radius;
private Point center;

public void draw(){
// code to draw here;

}
}

public class Square extends Shape {
private double side;
private Point topLeftCorner;

public void draw(){
// code to draw here;

}
}

public void drawAllShapes(Shape[] shapes){
for(int i = 0; i < shapes.length; i++){

Shape shape = shape[i];
shape.draw();

}
}

What if we
add more
shapes?

SOLID PRINCIPLES

- The Liskov Substitution Principle (LSP)

- Subclasses should be substitutable for their base classes

- Example for a subclass that is not substitutable for its base

class

public class Rectangle {
 private double width;
 private double height;

 public void setWidth(double width) { this.width = width; }
 public void setHeight(double height) { this.height = height; }
 public double getWidth() { return width; }
 public double getHeight() { return height; }
}

public class Square extends Rectangle {
public void setWidth(double width){

super.setWidth(width);
super.setHeight(width); }

public void setHeight(double height){
super.setWidth(height);
super.setHeight(height); }

}

What if
calArea()
is passed a
square?

public void calArea(Rectangle r) {
r.setWidth(5);
r.setHeight(4);
double area = r.getWidth() * r.getHeight();
if (area != 20)

System.out.println("Unexpected area: " + area);
}

SOLID PRINCIPLES
- The Liskov Substitution Principle (LSP)

- LSP is an important feature of programs that conform to the Open Closed

Principle

- When subclasses are completely substitutable for their base class, then

methods that use the base class can be substituted with impunity and the

subclasses can be changed with impunity

- In our example

- Geometrically, a square is a rectangle, but a square object is not a rectangle

object.

- Behaviorally, a square is not a rectangle. The behavior of a square object is

not consistent with the behavior of a rectangle object.

- For LSP to hold, subclasses must conform to the behavior that clients expect of

the base classes that they use.

SOLID PRINCIPLES

- The Interface Segregation Principle (ISP)

- Using many client specific interfaces is better than using one general

purpose interface.

- If you have a class that has several clients, rather than loading the

class with all the methods that the clients need, create specific

interfaces for each client.

- It is okay for a method to appear in more than one interface so that

separate clients can use the same method.

- When interfaces between classes and existing clients change, consider

adding new interfaces for existing objects which can reduce

recompilation and redeployment.

…

SOLID PRINCIPLES

- The Interface Segregation Principle

(ISP)

- Example for a design that does not

follow ISP

- Bloated interfaces can lead to

inadvertent couplings between clients

that ought to be isolated otherwise

- Bloated interfaces can be segregated

to prevent this coupling

Client A

Client B

Client N

Service

Client A methods

Client B methods
…

Client N methods

Video

Prime Video

<<interface>>
VideoActions

playVideo()
getVideoPlayTime()
playRandomAd()

SOLID PRINCIPLES

- The Dependency Inversion Principle (DIP)

- Depend on abstractions. Do not depend on concretions

(implementations)

- High level modules should not depend on low level modules.

Both should depend upon abstractions.

- Abstractions should not depend upon details. Details should

depend upon abstractions

- Every dependency in a design should target an interface or an

abstract class. No dependency should target a concrete class

SOLID PRINCIPLES

- The Dependency Inversion Principle (DIP)

- the idea …

SOLID PRINCIPLES

- The Dependency Inversion Principle (DIP)

- Example for how a copy program can work with any reader and

writer that implement the Reader and Writer interfaces. It is

no longer dependent on particular lower level modules!

public void copy() throws Exception {
 Scanner scnr = new Scanner(System.in);
 PrintStream ps = new PrintStream(new File("myFile"));
 while (scnr.hasNext()) {
 String line = scnr.nextLine();
 ps.println(line);
 }
}

public interface Reader {
public boolean hasLine();
public String getLine() throws Exception;

}

public interface Writer {
public void putLine (String s) throws Exception;

}

public void copy(Reader input, Writer output) throws Exception{
while (input.hasLine()) {

output.putLine(input.getLine()));
}

}

SOLID PRINCIPLES

- The Dependency Inversion Principle (DIP)

- Proper application of the Dependency Inversion Principle is

necessary for the creation of reusable frameworks.

- It is important for the construction of code that is resilient

to change.

- When abstraction is isolated from details, code is easier to

maintain.

IMPORTANT

In the industry, problem
solving often requires
interaction among many
colleagues. Rarely will you
be able to get everyone on a
project to agree on the
right approach to a
solution. Also, rarely will
any particular approach be
perfect. You'll often
compare the relative merits
of different approaches.

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

