
Application
Programming

Hend Alkittawi

Exception Handling
Introduction To Java Errors And

Exceptions

INTRODUCTION

- In Java when things go wrong a java.lang.Exception object is

created.

- For example,

- if we add elements to an uninitialized arraylist

- NullPointerException

- if we try to read from a file that doesn’t exist

- FileNotFoundException

- if we try to read past the end of the file

- IOException

- if the file changes while we are reading it

- IOException

THE CALL STACK

- When a Java program runs, execution begins in the main()

method. The main() method creates objects and invokes methods

on them.

- When execution moves to another method an entry is added to

the call stack.

- When a method finishes executing, the entry

is removed from the call stack, and execution

returns to the next line in the main() method

- this continues until the main method finishes
main()

obj.method()

call stack

THE CALL STACK

- The call stack entry below, among other things, contains

- the current method

- where the call occurred in that method

NullPointerException:
 at Student.getAverage(Student.java:79)
 at Student.toString(Student.java:62)
 at java.lang.String.valueOf(String.java:2615)
 at java.io.PrintStream.print(PrintStream.java:616)
 at java.io.PrintStream.println(PrintStream.java:753)
 at Student.main(Student.java:120)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:585)

EXCEPTIONS IN JAVA

- In Java, all exception classes inherit from the Exception class

- Exceptions in Java are checked or unchecked!

- Checked exceptions must be caught or thrown. Examples of

checked exceptions include:

- IOException

- FileNotFoundException

- Unchecked exceptions should never be caught or thrown. Examples

of unchecked exceptions include:

- NullPointerException

- ArrayIndexOutOfBoundsException

https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html

EXCEPTIONS IN JAVA

EXCEPTION HANDLING

- As developers, we must address any problems that might occur.

- For unchecked exceptions, your code should follow best

practices in order to prevent exceptions occurrences. For

example

- check for array bounds

- check for null values

- For checked exceptions, your code either throws the exception

or handles the exception with a try/catch block.

EXCEPTION HANDLING

- Using try, catch, and finally blocks

- Wrap all code that can cause a checked exception in try, catch

(and optionally finally) blocks

try {
System.out.println("code here can cause

 an exception");
} catch (Exception e) {

System.out.println("handle exception here");

} finally { // optional

System.out.println("code that must be absolutely
 executed after try block completes");
}

try {

System.out.println("reading from a file …");

} catch (FileNotFoundException e) {

System.out.println("handle exception here");

} finally { // optional

System.out.println("closing the file …");
}

EXCEPTION HANDLING

try {

System.out.println("reading from a file …");

} catch (FileNotFoundException e) {

System.out.println("code here will execute
 when a FileNotFoundException is thrown!");

} catch (IOException e) {

System.out.println("handle exception here");

} finally {

System.out.println("closing the file …");
}

try {

System.out.println("reading from a file …");

} catch (IOException e) {

System.out.println("code here will execute
 when a FileNotFoundException is thrown!");

} catch (FileNotFoundException e) {

System.out.println("code here will not execute
 when a FileNotFoundException is thrown!");

} finally {

System.out.println("closing the file …");
}

- A try block can have multiple catch blocks.

- The order of the catch blocks is important.

THROWING EXCEPTIONS

- An exception might be thrown, when there is nothing more you

can do about it!

public void methodA() {
try {

dangerZone();
} catch (Exception e) {

e.printStackTrace();
}

}

public void dangerZone() throws Exception {
throw new Exception();

}
}

EXCEPTION HANDLING EXAMPLE
import java.io.FileNotFoundException;
public class DemoExceptions {

public static void main(String[] args) {

try {
method(true);
System.out.println("returned from method()");

} catch (FileNotFoundException e) {
System.out.println("caught the exception, will handle it!");
e.printStackTrace();

} finally {
// code that must be absolutely executed after try block completes
System.out.println("finally will cleanup!");

}
}

public static void method(boolean exception) throws FileNotFoundException {
if(exception)

throw new FileNotFoundException();
System.out.println("method 1 executed successfully!");

}
}

HANDLING EXCEPTIONS

- Handling exceptions improves the user experience!

- Consider

- Where can errors happen caused by our logic?

- Where can exceptions happen?

- Where can user error occur?

- For each, how can we prevent or reduce these?

- What would the user expect?

USER EXPERIENCE!
- Suppose you are

exploring with Google

earth (desktop app),

you click a button and

it

- Closes and/or

reopens the

program/window

- Changes the size of

the window

- Moves GUI

components around

the view

- Does nothing!

- Suppose you are

searching Google (web

app), you enter some

text, click the button

and

- The web page

refreshes, losing

your search text

- The result page

comes up, without

results

- Nothing happens!

- Suppose you are

shopping on Amazon

(mobile app), you tap

a button and

- The app closes (and

maybe reopens)

- The entire style of

the app changes

- GUI components move

around the view

(unexpectedly)

- Nothing happens!

CODE DEMO

- Demo exception handling concepts
in Eclipse!

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

