
Application
Programming

Hend Alkittawi

Java Collections

03

Collections are Java’s Data
Structures

JAVA COLLECTIONS

- In Java, Collection is an interface. It is the root interface in

the collection hierarchy. A collection represents a group of

objects, known as its elements.

- Some collections allow duplicate elements and others do not.

Some are ordered and others unordered.

- The java.util package contains many Java collections, a few of

the most common are

- List

- Set

- Map

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

JAVA COLLECTIONS

- The Collection interface defines the behaviors of a collection,

including typical operations such as

- add elements to the collection .add()

- access elements of the collection .get()

- loop over the elements in the collection iterator

- access an element by its index, if applicable iterator

- test whether an element is contained in the collection .contains()

- find out the size of the collection .size()

- remove elements from the collection .remove()

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

JAVA COLLECTIONS HISTORY

- JDK 1.0: Vector, Dictionary, Hashtable, Stack, Enumeration

- JDK 1.2: Collection, Iterator, List, Set, Map, ArrayList,

 HashSet, TreeSet, HashMap, WeakHashMap

- JDK 1.4: RandomAccess, IdentityHashMap, LinkedHashMap,

 LinkedHashSet

- JDK 1.5: Queue, …

- JDK 1.6: Deque, ConcurrentSkipListSet/Map, …

- JDK 1.7: TransferQueue, LinkedTransferQueue

JAVA COLLECTIONS AND GENERICS

- Leveraging generics when initializing a collection is a common

practice.

- Typically, a collection is declared by including the type of

elements it contains within <...>, which is using Java's

generics notation.

- For example

// declare list to be a collection of Strings
Collection<String> list;

// initialize list to a concrete class that implements Collection
list = new ArrayList<String>();

JAVA LISTS

- The List interface represents an ordered collection (also

known as a sequence).

- Some of the classes that implement the List interface are

- ArrayList which is a resizable-array implementation of the

List interface.

- LinkedList which is a doubly-linked list implementation of the

List and Deque interfaces.

https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

JAVA LISTS

- An example for using a LinkedList

List<String> colorList = new LinkedList<String>();
colorList.add("red");
colorList.add("yellow");
colorList.add("blue");

JAVA SETS

- The Set interface represents a collection that contains no

duplicate elements.

- Some of the classes that implement the List interface are

- HashSet

- TreeSet

https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html

JAVA SETS

- An example for using a HashSet

String[] colors = {"red","white","blue","green","gray","orange","tan","white","cyan","peach","gray","orange"};
 List<String> list = Arrays.asList(colors);
 System.out.printf("List: %s%n", list);

prints …

 List: [red, white, blue, green, gray, orange, tan, white, cyan, peach, gray, orange]

String[] colors = {"red","white","blue","green","gray","orange","tan","white","cyan","peach","gray","orange"};

List<String> list = Arrays.asList(colors);

Set<String> set = new HashSet<String>(list);

System.out.printf("Set: %s%n", set);

prints …
Set: [tan, green, peach, cyan, red, orange, gray, white, blue]

This Arrays class contains various methods for
manipulating arrays (such as sorting and searching).
This class also contains a static factory that allows
arrays to be viewed as lists.

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

JAVA MAPS

- The Map interface represents an object that maps keys to values. A

map cannot contain duplicate keys; each key can map to at most one

value.

- Some of the classes that implement the List interface are

- HashMap

- TreeMap

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

JAVA MAPS

- An example for using a HashMap

// Not using maps, maintain two arrays, one for names and one for IDs
String[] studentNames = {"Alice", "Bob", "Carlos", "Diane"};
String[] studentIDs = {"atf123", "ght456", "liw789", "pwt012"};
// then to print out Alice, we need to know she is at index 0
System.out.println(studentIDs[0]);

// Instead, use a map!
Map<String,String> classMap = new HashMap<String,String>();
classMap.put("atf123", "Alice"); //As students register for the class,
classMap.put("ght456", "Bob"); // you can add them to the map. Then to
classMap.put("liw789", "Carlos"); // retrieve them, you only need their ID.
classMap.put("pwt012", "Diane");
System.out.println(classMap.get("atf123"));

JAVA MAPS

- Another example for using a HashMap
// Phone book implementation
Map<String,PhoneNumber> phoneBook = new HashMap<String,PhoneNumber>();
phoneBook.put("Alice", new PhoneNumber("210-555-1234"));
phoneBook.put("Bob", new PhoneNumber("210-555-4321"));
phoneBook.put("Carlos", new PhoneNumber("210-555-4444"));
phoneBook.put("Diane", new PhoneNumber("210-555-1111"));
System.out.println(phoneBook);

 prints …
 {Bob=PhoneNumber [number=210-555-4321], Alice=PhoneNumber [number=210-555-1234], Diane=PhoneNumber [number=210-555-1111],

 Carlos=PhoneNumber [number=210-555-4444]}

public class PhoneNumber{
 private String number;

 public PhoneNumber(String phoneNumber){
 this.number = phoneNumber;
 }

 @Override
 public String toString() {

return "PhoneNumber [number=" + number + "]";
 }
}

JAVA MAPS

- Another example for using a HashMap

Map<String, ArrayList<String>> states = new HashMap<String,ArrayList<String>>();

 ArrayList<String> tx = new ArrayList<String>();
tx.add("San Antonio");
tx.addAll(Arrays.asList("Austin", "Dallas", "Corpus Christi", "El Paso"));
states.put("Texas", tx);

ArrayList<String> ny = new ArrayList<String>();
ny.addAll(Arrays.asList("NYC", "Albany", "Niagara", "Long Island"));
states.put("New York", ny);
System.out.println(states);

 prints …
 {New York=[NYC, Albany, Niagara, Long Island], Texas=[San Antonio, Austin, Dallas, Corpus Christi, El Paso]}

CLASS ACTIVITY

- What collection types would you use in the following examples?

- A phone book (name, phone number)

- Storing user interaction history (clicks, actions, choices, etc)

- An address book (name, phone number, address, etc)

- User choices for character attributes in a game (hair color, shoes,

etc)

- Ordered task manager

CLASS ACTIVITY

- What collection types would you use in the following examples?

- A phone book (name, phone number)

- Map

- Storing user interaction history (clicks, actions, choices, etc)

- List

- An address book (name, phone number, address, etc)

- Map

- User choices for character attributes in a game (hair color, shoes,

etc)

- Set

- Ordered task manager

- List

CLASS ACTIVITY

- Come up with 3 distinct applications that

- Require a List

- Require a Set

- Require a Map

CLASS ACTIVITY

- Come up with 3 distinct applications that

- Require a List

- Groceries list/High scores/List of images/To do

list/Assignments/Labs

- Require a Set

- Enrollment UTSA/Census/UTSA IDs/Grocery list!/Medical

files/Word count

- Require a Map

- Login info/UTSA schedule/Dictionary/Word count/parking spots

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

