
Application
Programming

Hend Alkittawi

Java Iteration

Iterating through objects in Java
Collections

INTRODUCTION
- Related to the discussion on Java generics and collections is the

discussion on the following interfaces

- Iterator, Iterable, Comparable, Comparator

- The Java API has a consistent approach to iterators that are

implemented by nearly all collections in the class Library.

- Iterators are implemented in the Java API using two primary interfaces:

- Iterator: used to define an object that can be used as an iterator.

- Iterable: used to define a collection from which an iterator can be

extracted.

- The Comparable and Comparator interfaces in Java facilitate comparisons

between objects

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

THE ITERATOR INTERFACE

- The Iterator interface is defined in the Java APIs.

- The interface is used by a class that represents a collection

of objects, providing a means to move through the collection

one object at a time.

- An Iterator provides a consistent and simple mechanism for

systematically processing a group of objects.

- An Iterator is an object that has methods that allow you to

process a collection of items one at a time.

- An Iterator object in Java is defined using the Iterator

interface.

THE ITERATOR INTERFACE

- Every iterator object has a method called hasNext() that

returns a boolean value indicating whether there is at least

one more item to process.

- Every Iterator also has a method called next() to retrieve the

next item in the collection to process.

- The Iterator interface also has a method called remove() which

takes no parameters and has a void return type. A call to the

remove() method removes the object that was most recently

returned by the next method from the underlying collection.

THE ITERABLE INTERFACE
- The Iterable interface has a single method iterator() that returns an Iterator

object.

- If an object has implemented the Iterable interface, we can use a variation of the

for loop to process items using a simplified syntax → The enhanced for loop

(for-each loop).

- For example if bookList is an Iterable object that contains book objects we can use
a for loop to process each book object as follows

for (Book myBook: bookList)
 system.out.println(myBook)

- This version of the for Loop processes each object in the Iterator in turn. It is
equivalent to the following:
Book myBook;
while(bookList.hasNext(){
 myBook = bookList.next();
 System.out.println(myBook) }

import java.util.Iterator;

public class Range implements
 Iterable<Integer>{

 private int start, end;

 public Range(int start, int end) {
this.start = start;
this.end = end;

 }

 public Iterator<Integer> iterator(){
return new RangeIterator(start,

 end);
 }
}

import java.util.Iterator;
import java.util.NoSuchElementException;

public class RangeIterator implements
 Iterator<Integer>{

 private int cursor;
 private int end;

 public RangeIterator(int start, int
 end){

this.cursor = start;
this.end = end;

 }

 public boolean hasNext() {

return this.cursor < end;
 }

 public Integer next() {
if(this.hasNext()) {
 int current = cursor;
 cursor++;
 return current;

 }
 throw new NoSuchElementException();
 }

 public void remove() {
throw new

 UnsupportedOperationException();
 }
}

import java.util.Iterator;

public class RangeTest {

 public static void main(String[] args){
Range range = new Range(1, 7);
System.out.println("Looping with an

 iterator");
Iterator<Integer> it =

 range.iterator();
while(it.hasNext()){
 int cur = it.next();
 System.out.print(cur + "\t");
}

System.out.println("\nLooping with a
 for-each loop");

for(Integer cur : range){
 System.out.print(cur + "\t");
}

 }
}

Looping with an iterator
1 2 3 4 5 6
Looping with a for-each loop
1 2 3 4 5 6

public class Course {
 private String prefix;
 private int number;
 private String title;
 private String grade;

 public Course(String prefix, int number,
 String title, String grade){

this.prefix = prefix;
this.number = number;
this.title = title;
if (grade == null)
 this.grade = "";
else
 this.grade = grade;

 }

 public Course(String prefix, int number,
 String title){
 this(prefix, number, title, "");
 }

 public boolean taken(){
return !grade.equals("");

 }

 public String toString(){
String result = prefix + " " + number

 + ": " + title;
if (!grade.equals(""))
 result += " [" + grade + "]";
return result;

 }
}

public class ProgramOfStudy implements
 Iterable<Course>{
 private List<Course> list;

 public ProgramOfStudy(){
list = new LinkedList<Course>();

 }

 public void addCourse(Course course){
if (course != null)
 list.add(course);

 }

 public String toString(){
String result = "";
for (Course course : list)
 result += course + "\n";
 return result;
}

 @Override
 public Iterator<Course> iterator() {

return list.iterator();
 }

 public void loadCourses() {
list.add(new Course("CS", 3443,

 "Application Programming", "A+"));
list.add(new Course("CS", 3343,

 "Algorithms", "B"));
list.add(new Course("CS", 1173, "Data

 Analysis and Visualization", "C+"));
list.add(new Course("CS", 2073,

 "Introduction to Programming"));
 }
}

public class IterableTest {

public static void main(String[] args) throws
 Exception{
 ProgramOfStudy pos = new ProgramOfStudy();
 pos.loadCourses();
 System.out.println(pos);

 for(Course course : pos) {
pos.addCourse(new Course("MATH", 1044,

 "Caluclus I"));
 }

 System.out.println("Removing courses with
 no grades.\n");

 Iterator<Course> itr = pos.iterator();

 while (itr.hasNext()){
Course course = itr.next();
if (!course.taken())
 itr.remove();
}
System.out.println(pos);

 }
}

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

