
Application
Programming

Hend Alkittawi

Java Comparison

Comparing objects in Java
Collections

INTRODUCTION
- Related to the discussion on Java generics and collections is the

discussion on the following interfaces

- Iterator, Iterable, Comparable, Comparator

- The Java API has a consistent approach to iterators that are

implemented by nearly all collections in the class Library.

- Iterators are implemented in the Java API using two primary interfaces:

- Iterator: used to define an object that can be used as an iterator.

- Iterable: used to define a collection from which an iterator can be

extracted.

- The Comparable and Comparator interfaces in Java facilitate comparisons

between objects

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

COMPARING OBJECTS

- Classes that implement the Comparable and Comparator

interfaces must contain certain key methods for comparing

objects created by that class

- For example, the String class implements Comparable, so

sorting Strings in an array alphabetically is easy

String[] fruits = new String[] {"Pineapple", "Apple", "Orange", "Banana"};
Arrays.sort(fruits);

THE COMPARABLE INTERFACE

- The Comparable interface contains only one method: compareTo()

which takes an object as a parameter and returns an integer

- The purpose of this interface is to provide a common mechanism for

comparing one object to another

ClassName obj1 = new ClassName();
ClassName obj2 = new ClassName();
int result = obj1.compareTo(obj2);

- The integer that is returned from the compareTo() method should be

- negative if obj1 < obj2

- positive if obj1 > obj2

- zero if obj1 = obj2

THE COMPARABLE INTERFACE
- If an object is Comparable, we can sort an array of it

Book book1 = new Book(...);
Book book2 = new Book(...);

- For an array of Comparable objects, use Arrays.sort()
- The Arrays class provides the sorting logic for Comparable types

- Arrays.sort()takes an array of objects which implement the

Comparable interface

Book[] books = new Book[2];
books[0] = book1;
books[1] = book2;
Arrays.sort(books); // Comparable

THE COMPARABLE INTERFACE

- If an object is Comparable, we can sort a collection of it

Book book1 = new Book(...);
Book book2 = new Book(...);

- For an arraylist of Comparable objects use the sort() method

from Collections

ArrayList<Book> bookList = new ArrayList<Book>();
bookList.add(book1);
bookList.add(book2);
Collections.sort(bookList);

// some code is omitted, check code for
project in Canvas

public class Book implements Comparable<Book> {
 private String title;
 private String author;

 public Book(String title, String author) {
this.title = title;
this.author = author;

 }

 @Override
 public String toString() {

return "Book [title=" + title + ", author="
 + author + "]";
 }
 @Override
 public int compareTo(Book other) {

return
 this.getAuthor().compareTo(

other.getAuthor());
 }
}

public class ComparableTest {

 public static void main(String[] args) {
Book book1 = new Book("Java The Complete Guide", "Pat Alfonso");
Book book2 = new Book("Java for Begginers", "Hamza Ryan");
Book book3 = new Book("Java for Begginers", "Daisy Mack");
Book book4 = new Book("Java All in One", "Carolina Minato");
Book book5 = new Book("Java All in One", "Carolina Aidan");

ArrayList<Book> bookArrayList = new ArrayList<Book>();
bookArrayList.addAll(Arrays.asList(book1, book2, book3, book4, book5));
System.out.println("******* Unsorted Collection *******");
System.out.println(bookArrayList);

Collections.sort(bookArrayList);
System.out.println("******* Sorted Collection *******");
System.out.println(bookArrayList);

Book[] bookArray = {book1, book2, book3, book4, book5};

System.out.println("******* Unsorted Array *******");
for(Book book : bookArray)

System.out.println(book);

Arrays.sort(bookArray);

System.out.println("******* Sorted Array *******");
for(Book book : bookArray)

System.out.println(book);
}

}

THE COMPARATOR INTERFACE
- The Comparator interface contains the compare() method which takes two

objects as a parameter and returns an integer

- If an object is Comparator, we can sort an array of it

Book book1 = new Book(...);
Book book2 = new Book(...);

- For an array of Comparable objects, use Arrays.sort()
- The Arrays class provides the sorting logic for Comparable types

- Arrays.sort()takes an array of objects which implement the Comparable

interface

Book[] books = new Book[2];
books[0] = book1;
books[1] = book2;
Arrays.sort(books); // Comparable
Arrays.sort(books, Book.bookComparator); // Comparator

THE COMPARATOR INTERFACE
- For an arrayList, you can use the use the sort() method from ArrayList

bookList.sort(Book.bookComparator);

where BookComparator is defined in the Book class as follows

public static Comparator<Book> bookComparator
 = new Comparator<Book>() {

 public int compare(Book book1, Book book2) {
return book1.getTitle().compareTo(book2.getTitle());

 }
 };

// public static Comparator<Book> bookComparator = new Comparator<Book>();

- Inner classes are classes defined within another class.

- An anonymous inner class is a class without a name, for which only one object is

created.

// some code is omitted, check code
for project in Canvas

public class Book {

 public static MyComparator bookComparator;

 private String title;
 private String author;

 public Book(String title, String author){
this.title = title;
this.author = author;
bookComparator = new MyComparator();

 }

 @Override
 public String toString() {

return "Book [title=" + title + ",
 author=" + author + "]";
 }
}

// some code is omitted, check code for project in Canvas
public class ComparatorTest {

 public static void main(String[] args){
Book book1 = new Book("Java The Complete Guide", "Pat Alfonso");
Book book2 = new Book("Java for Begginers", "Hamza Ryan");
Book book3 = new Book("Java for Begginers", "Daisy Mack");
Book book4 = new Book("Java All in One", "Carolina Minato");
Book book5 = new Book("Java All in One", "Carolina Aidan");

ArrayList<Book> bookArrayList = new ArrayList<Book>();
bookArrayList.addAll(Arrays.asList(book1, book2, book3, book4, book5));

Collections.sort(bookArrayList, Book.bookComparator);

// OR
bookArrayList.sort(Book.bookComparator);

}

Implementing The Comparator Interface
public class MyComparator implements Comparator<Book>{
 @Override
 public int compare(Book book1, Book book2){
 return book1.getAuthor().compareTo(book2.getAuthor());
 }
}

// some code is omitted, check code for project
in Canvas
public class Book {
 public static MyComparator bookComparator;
 private String title;
 private String author;

 public Book(String title, String author) {
this.title = title;
this.author = author;
bookComparator = new MyComparator();

 }

 @Override
 public String toString() {

return "Book [title=" + title
 + ", author=" + author + "]";
 }

 private class MyComparator implements Comparator<Book> {
@Override
public int compare(Book book1, Book book2) {

return book1.getAuthor().
 compareTo(book2.getAuthor());

}
 }
}

Implementing The Comparator Interface As An Inner Class

// some code is omitted, check code for project in Canvas
public class ComparatorTest {

 public static void main(String[] args){
Book book1 = new Book("Java The Complete Guide", "Pat Alfonso");
Book book2 = new Book("Java for Begginers", "Hamza Ryan");
Book book3 = new Book("Java for Begginers", "Daisy Mack");
Book book4 = new Book("Java All in One", "Carolina Minato");
Book book5 = new Book("Java All in One", "Carolina Aidan");

ArrayList<Book> bookArrayList = new ArrayList<Book>();
bookArrayList.addAll(Arrays.asList(book1, book2, book3, book4, book5));

Collections.sort(bookArrayList, Book.bookComparator);

// OR
bookArrayList.sort(Book.bookComparator);

}

// some code is omitted, check code for project in Canvas

public class Book {
public static Comparator<Book> bookComparator = new Comparator<Book>() {

public int compare(Book book1, Book book2) {
return book1.getAuthor().compareTo(book2.getAuthor());

}
};

private String title;
private String author;

public Book(String title, String author) {
this.title = title;
this.author = author;

}
}

// some code is omitted, check code for project
in Canvas
public class Book {
 public static MyComparator bookComparator;
 private String title;
 private String author;

 public Book(String title, String author) {
this.title = title;
this.author = author;
bookComparator = new MyComparator();

 }

 @Override
 public String toString() {

return "Book [title=" + title
 + ", author=" + author + "]";
 }

 private class MyComparator implements Comparator<Book> {
@Override
public int compare(Book book1, Book book2) {

return book1.getAuthor().
 compareTo(book2.getAuthor());

}
 }
}

Implementing The Comparator Interface As An Anonymous
Inner Class

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

