
Application
Programming

Hend Alkittawi

Multi-threaded Apps

Building applications the utilize
threads

INTRODUCTION

- Recall that a thread is a single sequence of execution, and

that code running within a single thread will execute one step

after another.

- Every Android app starts life with a main thread. The main

thread, however, is not a pre-ordained list of steps.

Instead it sits in an infinite loop and waits for events

initiated by the user or the system. Then it excuse code and

response to those events as they occur.

- So far, all of our Android apps has been executed on the main

thread.

INTRODUCTION
- One of the key rules of Android development is to never perform

time-consuming operations on the main thread of an application.

- The second rule is that the code within a separate thread must never, under

any circumstances, directly update any aspect of the user interface.

- Any changes to the user interface must always be performed from within the

main thread.

- The Android UI toolkit is not thread-safe. Attempts to work with

non-thread-safe code from within multiple threads will typically result in

intermittent problems and unpredictable application behavior!

- If the code executing in a thread needs to interact with the user interface,

it must do so by synchronizing with the main UI thread. This is achieved by

creating a handler within the main thread, which, in turn, receives messages

from another thread and updates the user interface accordingly.

ANDROID’S MAIN THREAD

- Regular threads vs the main thread

events
(from Android or User)

process an event

Android’s Main ThreadA Thread

run some code

done
x

● reproduced from book figure

ANDROID’S MAIN THREAD

- The main thread in an Android application runs all the code

that updates the UI, including the code executed and response

to the different UI related events (activity startup, button

presses, …).

- because the events are all related to the UI and some way,

the main thread is sometimes called the UI thread.

- The event loop keeps the UI code in sequence. It makes sure

that none of these operations step on each other while still

ensuring that the code is executed in a timely fashion.

BACKGROUND THREADS

- Sometimes a task takes long time compared to

other tasks. During that time, the UI will be

completely unresponsive, which might result

in an Application Not Responding or ANR.

- An ANR occurs when Android’s watchdog

determines that the main thread has failed to

respond to an important event, like pressing

the back button.

- This is not the desired behavior for any

application.

https://docs.google.com/file/d/1BvjmURqOPZXicVFe7__SFKh636LTuU2Y/preview

WORD GENERATOR APP

- Let us look at an app that

utilizes threads

https://docs.google.com/file/d/1nkRc7UAYLh4XypyQb8B3BBa-vJvNiFNs/preview

runOnUiThread(runnable)runs the specified
action on the UI thread. If the current
thread is the UI thread, then the action
is executed immediately. If the current
thread is not the UI thread, the action
is posted to the event queue of the UI

thread.

public class MainActivity extends AppCompatActivity {
 private TextView generatorText;
 private TextView counterText;
 private Button generatorButton;
 private Button counterButton;
 private WordGenerator generator;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 generatorButton = findViewById(R.id.generator_button);
 counterButton = findViewById(R.id.counter_button);
 generatorText = findViewById(R.id.generator_text);
 counterText = findViewById(R.id.counter_text);

 generatorButton.setOnClickListener((view) -> startCounter());

 counterButton.setOnClickListener((view) -> {
 int count = Integer.parseInt(counterText.getText().toString());
 counterText.setText(String.valueOf(count + 1));
 });
 }
 public void startCounter() {
 Thread thread = new Thread(() -> {
 generator = new WordGenerator(5);
 while (true) {
 updateCounterText(generator.generateWord(), generatorText);
 try {
 Thread.sleep(500); // Update every half second
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 });
 thread.start();
 }
 public void updateCounterText(String text, TextView textView) {
 runOnUiThread(() -> textView.setText(text));
 }
}

public class WordGenerator {

 public final int wordLength;

 public WordGenerator(int wordLength){
 this.wordLength = wordLength;
 }

 public String generateWord(){
 String generatedWord = "";
 Random rand = new Random();
 for(int i = 0; i < wordLength; i++){
 char randChar = (char) rand.nextInt(256);
 generatedWord = generatedWord + randChar;
 }
 return generatedWord;
 }

}

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

