
Application
Programming

Hend Alkittawi

Testing
Introduction to JUnit Framework for

Testing Java Code

INTRODUCTION

- Testing in application programming/software development

Image Source: https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

https://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

INTRODUCTION

- Unit testing is a software testing method where individual

components of a software application, known as "units", are

tested in isolation from the rest of the application.

- A unit is typically the smallest testable part of an

application, such as a function, method, or class.

- Unit tests are designed to validate that each unit of the

software performs as expected. These tests are usually

automated and are written and run by software developers as

part of the development process.

UNIT TESTING

- Unit testing is a systematic attempt to reveal errors

I DON’T ALWAYS TEST
CODE

BUT WHEN I DO, I DO IT
IN PRODUCTION

��

UNIT TESTING

- Importance of Unit Testing in Software Development

- Early Detection of Issues

- Improved Code Quality

- Reduces Debugging Time

- Promotes Confidence and Reliability

- Cost Efficiency

- Supports Continuous Integration and Continuous Deployment

- Documentation

UNIT TESTING

- For each method implemented, consider the following when

creating the test cases

- Preconditions: Assumptions/requirements made on the parameters

or class variables to be used in the method.

- Postconditions: Assumptions/requirements made on the returned

value (or updated class variables) at the end of the method.

JUNIT TESTING

- JUnit is a widely used open-source testing framework for Java

programming language. It provides an easy-to-use framework for

writing and running repeatable tests.

- JUnit has become the de facto standard for unit testing in

Java, integrated with various development environments and

build tools.

- JUnit is linked as a JAR at compile-time

- The framework resides under package org.junit

JUNIT TESTING

- JUnit uses Java annotations to define test methods and manage

test life cycle events. Key annotations include:

- @Test: Marks a method as a test method.

- @Before: Runs before each test method to perform setup.

- @After: Runs after each test method to perform cleanup.

- @BeforeClass: Runs once before any of the test methods in the

class.

- @AfterClass: Runs once after all the test methods in the

class.

- @Ignore: Ignores the marked test method.

JUNIT ANNOTATIONS

JUNIT TESTING

- JUnit provides a set of assertion methods to verify expected

outcomes, such as:

- assertEquals(expected, actual)

- assertNotEquals(unexpected, actual)

- assertTrue(condition)

- assertFalse(condition)

- assertNull(object)

- assertNotNull(object)

- fail(message)

JUNIT IN ECLIPSE

- JUnit integrates seamlessly with IDEs like Eclipse

- To create a JUnit test in Eclipse

- Create a new package, name it test, under your project (New >

Package)

- Right-click on the test package > New JUnit Test Case

- On the New JUnit Test Case wizard, select JUnit 4 and fill the

fields

- Select which methods to be tested in the generated class

- Add the JUnit library to the build path

- Create the test methods and run the test

Create a new package under your project (New > Package)

Right-click on the test package > New JUnit Test Case

On the New JUnit Test Case wizard, select JUnit 4 and fill the highlighted

fields > Next

Select which methods are to be tested in the generated class > Finish

Add the JUnit library to the build path

Create the test methods and run the test

 right-click in the text editor > Run As > JUint Test

package core;

public class StringUtils {

 public static String capitalize(String input) {
 return input.toUpperCase();
 }

 public static boolean isPalindrome(String str) {
 if (str == null)
 throw new IllegalArgumentException("Input string cannot be null");

 str = str.toLowerCase();
 int left = 0;
 int right = str.length() - 1;
 while (left < right) {
 if (str.charAt(left++) != str.charAt(right--)) {
 return false;
 }
 }
 return true;
 }
}

package test;

public class TestStringUtils {

 @Ignore
 public void testCapitalize() {
 fail("Not yet implemented");
 }

 @Test
 public void testIsPalindromePalindromeString() {
 boolean result = StringUtils.isPalindrome("racecar");
 assertTrue(result);
 }

 @Test
 public void testIsPalindromeNonPalindromeString() {
 boolean result = StringUtils.isPalindrome("hello");
 assertFalse(result);
 }
}

package core;

public class Calculator {

 public int add(int a, int b) {
 return a + b;
 }

 public int subtract(int a, int b) {
 return a - b;
 }

 public int multiply(int a, int b) {
 return a * b;
 }

 public int divide(int a, int b) {
 if (b == 0)

throw new IllegalArgumentException("Cannot divide by zero");
 return a / b;
 }
}

package test;

public class TestCalculator {

 private Calculator calculator;

 @Before
 public void setUp() {
 calculator = new Calculator();
 }

 @Test
 public void testAdd() {
 assertEquals(5, calculator.add(2, 3));
 assertEquals(-1, calculator.add(2, -3));
 assertEquals(0, calculator.add(0, 0));
 }

 @Test
 public void testSubtract() {
 fail("Not yet implemented");
 }

 @Test
 public void testDivide() {
 assertEquals(2, calculator.divide(6, 3));
 assertEquals(-2, calculator.divide(-6, 3));
 assertEquals(0, calculator.divide(0, 5));
 }

 @Test(expected = IllegalArgumentException.class)
 public void testDivisionByZero() {
 calculator.divide(10, 0);
 }
}

package core;

public class Car {

 private String make;
 private String model;
 private int year;
 private double fuelLevel;

 public Car(String make, String model, int year) {
 this.make = make;
 this.model = model;
 this.year = year;
 this.fuelLevel = 0.0;
 }

 // getters, setters, and other methods

 public void drive(double distance) {
 if (fuelLevel > 0) {

fuelLevel -= distance / 10; // Assuming fuel consumption
 // rate of 10 units per mile
 }
 }
}

package test;

public class TestCar {

 @Test
 public void testAddFuel() {
 Car car = new Car("Toyota", "Camry", 2022);
 car.addFuel(20.0);
 assertEquals(20.0, car.getFuelLevel(), 0.0);
 }

 @Test
 public void testDriveWithEnoughFuel() {
 Car car = new Car("Honda", "Accord", 2023);
 car.addFuel(30.0);
 car.drive(150.0); // Assuming 150 miles drive
 assertEquals(15.0, car.getFuelLevel(), 0.0);
 }

 @Test
 public void testDriveWithInsufficientFuel() {
 Car car = new Car("Ford", "Focus", 2021);
 car.addFuel(10.0);
 car.drive(150.0); // Assuming 150 miles drive
 assertEquals(10.0, car.getFuelLevel(), 0.0);
 }
}

CODE DEMO

- Show how to create and
run JUnit tests in
Eclipse.

THANK

DO YOU HAVE ANY
QUESTIONS?

hend.alkittawi@utsa.edu

By Appointment

OnlineYOU!

@

