CS 2124: DATA STRUCTURES
Spring 2024

Topics: AVL Trees and Segment Trees

Topics

* AVL (Adelson, Velski & Landis) Trees
e AVL Tree (Height vs Balance)

AVL Tree (Balance)

Rotations

* Left rotation

e Right rotation

e Left-Right rotation

e Right-Left rotation
AVL Tree (Insertion)
AVL Tree (Deletion)

* Segment Trees

* Segment Trees (Array to Tree)
* Segment Trees (Tree to Array)
* Segment Trees (Applications)

AVL (Adelson, Velski & Landis) Tree

* What if the input to binary search tree (BST) comes in a sorted (ascending or descending) manner?

42 Search 10

>

What is the problem with this BST? /

* Itis observed that BST's worst-case performance is
closest to linear search algorithms, that is O(n).

* In real-time data, we cannot predict data pattern
and their frequencies.

* So, a need arises to balance out the existing BST.

35

[\

19 31

/A

14 27
2 .

/

/

10

If input ‘appears’ non-increasing manner

o Search 31

\

14

o
\

VAN
VA

31 42

If input ‘appears’ in non-decreasing manner

AVL Tree

 AVL are height balancing binary search tree (BST). AVL trees have the property of dynamic self-balancing in
addition to all the other properties exhibited by BST.

* AVL tree checks the height of the left and the right sub-trees and assures that the difference is not more than 1.

e This difference is called the Balance Factor.

In the third tree, the right subtree of A has height 2 and
the left is missing, so it is 0, and the difference is 2 again.

\\
~~
-~

In the second tree, the left subtree of C has height 2 and . 2 2
the right subtree has height 0, so the differenceis2. " 7TTTTo------- » (€ A
0 1 / \ 1
B i B
0 / ' \ 0 0 / g
AVL tree permits difference (balance factor) to be only 1. A C A C

Balance-Factor = height(left-subtree) — height(right-subtree) 1.Balanced 2.Not balanced 3.Not balanced

AVL Tree (Height vs Balance)

Height (H):
 H(null) =-1 (no nodes)
* H(Single Node) =0

* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Balance (B):
* B(node) = H(Left Sub-Tree) - H(Right Sub-Tree)
* If the difference in the height of left and right sub-trees is more
than 1, the tree is balanced using some rotation techniques.

* Maintain a threshold of 1 or less then 1
* This threshold is a parameterized, but standard is 1

B
AVL Tree =|B(node)| < 1 Ml
0 / \ 0

0

1.Balanced

H(Left Sub-tree) = 1 H(Right Sub-tree) = 1
H(tree)=1+1 =2 H(tree)=1+1 =2
- 2
c A
1/ X4
1B B
0 / : \ 0
A c
2.Not balanced 3.Not balanced

AVL Tree (Balance)

* B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)
* AVLTree =|B(node)| <1
* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1 3

H(Left Sub-Tree) =1

A

How are these computer ?

H(Right Sub-Tree)=0

Height:

* H(null)=-1

* H(Single Node) =0

* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Tree (Balance)

B(Node3)=1-0

B(Node3)=1
1. B (Node) = H(Left Sub-Tree) - H(Right Sub-Tree)
2. AVL Tree =|B(node)| < 1

3
3. H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1 /
I B(Nodel1l)=0-0=0
H(Left Sub-Tree or Node 1) =1 1 4
N B (Node 4) =-1-(-1) = 0
0 2 H(Right Sub-Tree or
Apparently this tree is Left Heavy Node 4)=0
* Left Heavy = Positive Balance = + ve value
* Right Heavy = Negative Balance = - ve value B (Nodes 0, 2) =0
Height:
* H(null)=-1

* H(Single Node) =0
* H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Tree (Balance)

B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)
AVL Tree =|B(node)| < 1
H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Not an AVL Tree
We will use balancing to make it an AVL tree

Height:

e H(null)=-1

* H(Single Node) =0

* H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

B (Node 4) =3

4

N

AVL Rotations

* To balance itself, an AVL tree may perform the following four kinds of rotations:

1. Left rotation
2. Right rotation
3. Left-Right rotation
4. Right-Left rotation
* The first two rotations are single rotations and the next two rotations are double rotations.

1. Left Rotation:
If a tree becomes unbalanced, when a node is inserted into the right of the right subtree, then we perform a single left rotation

- R
E‘3\ 0 oA/B\.Co

C Cc

Right unbalanced tree Left Rotation Balanced

AVL Rotations

* To balance itself, an AVL tree may perform the following four kinds of rotations:
Left rotation

Right rotation

Left-Right rotation

Right-Left rotation

B whN e

2. Right Rotation

* AVL tree may become unbalanced, if a node is inserted in the left of the left subtree. The tree then needs a
right rotation.

Cc

1 | (' | 0
B/ :
- - o A/ \C 6

A A

Left unbalanced Tree Right Rotation Balanced Tree

AVL Rotations

3. Left-Right Rotation: A left-right rotation is a combination of left rotation followed by right rotation.

a) A node has been inserted into the right of the left subtree. This makes C an unbalanced node. These
scenarios cause AVL tree to perform left-right rotation.

b) We first perform the left rotation on the left subtree of C. This makes A, the left subtree of B.

c) Node C s still unbalanced, however now, it is because of the left of the left-subtree.

d) We shall now right-rotate the tree, making B the new root node of this subtree. C now becomes
the right subtree of its own left subtree.
c

B
e) The tree is now balanced. . P :
A C

o

AVL Rotations

4. Right-Left Rotation: It is a combination of right rotation followed by left rotation.

a) A node has been inserted into the left subtree of the right subtree. This makes A, an unbalanced node

with balance factor 2.
A

b) First, we perform the right rotation along C node, making C the right subtree of its own left subtree
B. Now, B becomes the right subtree of A.

c) Node A is still unbalanced because of the right subtree of its right subtree and requires a left rotation.

d) A left rotation is performed by making B the new root node of the subtree. A becomes the left A

subtree of its right subtree B.

0

B

e) The tree is now balanced. 2
_—a ™™
A G

H'.

AVL Rotations

-2
(5)

)
&)
©

Moving one position left
The tree is not balanced to balanced the tree

B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)
H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

Height:

H(null) = -1
H(Single Node) =0
H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

0

(6)
& ©

Tree is balanced after
the left rotation

The tree is not balanced

* Left Heavy = Positive Balance = + ve value = right rotation
* Right Heavy = Negative Balance = - ve value = left rotation

Moving one position
right to balance the tree

Tree is balanced after
the right rotation

AVL Rotations

* Left Heavy = Positive Balance = + ve value = right rotation
* Right Heavy = Negative Balance = - ve value = left rotation

The tree is not balanced LL Rotation RR Rotation

0
0 0
RR Rotation LL Rotation The tree is balanced

The tree is not balanced

AVL Rotations

1. Right Rotation on node Y o 2. Left Rotation on node Z

>

B(T1,T2)=-1-(-1)=0 HB.(T3, T4)=-1-(-1)=0

In this case we did not had any node values
In case of node values we need to maintain
BST property

Height (H):
* B (node) = H(Left Sub-Tree) - H(Right Sub-Tree) e H(null)=-1
* AVLTree =|B(node)| <1 * H(Single Node) =0

* H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1 * H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Tree

(Try to compute the balance by your self using formulas)

Is this Tree balanced?

B (node) = H(Left Sub-Tree) - H(Right Sub-Tree) Height (H):

e H(null)=-1
« AVLTree =|B(node)| < 1
ree =|B(node)| < * H(Single Node) = 0

* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1 H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Rotations

* To balance itself, an AVL tree may perform the following four kinds of rotations:

* Right Heavy Left Heavy = Positive Balance = + ve value
e Left rotation Right Heavy = Negative Balance = - ve value
* Left-Right rotation o
* Left Heavy o o o
* Right rotation o >
* Right-Left rotation o o

AVL Tree (Balance)

* B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)

* AVLTree =|B(node)| <1 2 B(Node 4) =3
* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

* Notan AVL Tree

* We will use balancing to make it an AVL tree

e Left Heavy = Positive Balance = + ve value 3

Left Heavy /

* Right rotation)
* Right-Left rotation

AVL Tree (Balance)

* B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)
* AVLTree =|B(node)| <1
* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

* Notan AVL Tree
* We will use balancing to make it an AVL tree

e Left Heavy = Positive Balance = + ve value
e Left Heavy

* Right rotation

* Right-Left rotation

Height (H):

* H(null)=-1

* H(Single Node) =0

* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

B(Node1)=0-0=0

B (Node 3)=1

3

0

2

B (NodesO,2)=0

N

4

B (Node 4) =
-1-(-1) =0

AVL Tree (Balance)

2 Try to Balance this tree
* B (node) = H(Left Sub-Tree) - H(Right Sub-Tree) N
* AVLTree =|B(node)| <1 3
* H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1 N
* Notan AVL Tree 4
* We will use balancing to make it an AVL tree
N\

* Left Heavy = Positive Balance = + ve value * Right Heavy = Negative Balance = - ve value 5
e Left Heavy * Right Heavy

* Right rotation e Left rotation \

* Right-Left rotation * Left-Right rotation

6

Height:
e H(null)=-1

* H(Single Node) =0
* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1

AVL Tree (Balance)

* B (node) = H(Left Sub-Tree) - H(Right Sub-Tree)
* AVLTree =|B(node)| <1
H (tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1 Balance (Node 4) = 1-1

H(Left Sub-Tree) =1 4 H(Right Sub-Tree)=1

=

To Balance:
First left rotation on node 4 \ Balance (Node 6)
2. Then right rotations on nodes 2 & 6 Balance (Node 2) 9 5 1-1=0
1-1=0
Height: 1 3 5 !
* H(null)=-1
Balance (Nodes 1,3) =0 Balance (Nodes 5, 7) = 0

* H(Single Node) =0

* H(tree) = Max [H(Left Sub-Tree), H(Right Sub-Tree)] +1 -1-(-1) =0 -1-(-1)=0

