CS 2124: DATA STRUCTURES
Spring 2024

4th Lecture (Part —1)

Topics: Recursion

Topics

Assignment — 2 (Any Questions)
Mid-Term Exam (Discussion)

Recursion
* Recursion (Properties)
e Recursion (Types)

Recursion vs Iteration
* Example using Factorial
* Example using Fibonacci Sequence

Recursion (Memory)

Recursion (Advantages and Disadvantages)
Recursion (Real world examples)

Binary Search (Using Recursion and Iteration)

Towers of Hanoi

Midterm Exams

* Data Structure (Midterm Exam — In person) — Thursday, 29th Feb
Exam will be on Canvas

Attendance is compulsory

Location: NPB 1.226

* Timing:
Section Time/ NPB 1.226 |Students
CS 2124-0CA 36734 10:00-10:30 30
C52124-0C1 CS 2124-0CB 36736 10:40-11:10 29
CS 2124-0DA 36738 11:30-12:00 30
C52124-0D4 CS 2124-0DB 36739 12:10-12:40 30
CS 2124-0EA 42879 01:30-02:00 30
52124 -0kl CS 2124-0OEB 42880 02:10-02:40 30

Recursion

* Recursion in data structure is when a function calls itself indirectly or directly, and the function
calling itself is known as a recursive function.

* |t's generally used when the answer to a larger issue could be depicted in terms of smaller
problems.

* A function is called ‘recursive’ if a statement within the body of a function calls the same
function. Sometimes called ‘circular definition’, recursion is thus the process of defining
something in terms of itself.

* Recursion algorithm are based on divide and conquer principle to conquer problem.

Recursion (Properties)

* A recursive function can go infinite like a loop. To avoid infinite running of recursive function,
there are two properties that a recursive function must have

1. Base criteria - There must be at least one base criteria or condition, such that, when
this condition is met the function stops calling itself recursively.

2. Progressive approach — The recursive calls should progress in such a way that each
time a recursive call is made it comes closer to the base criteria.

« Examples: We can use recursive functions for problems such as Towers of Hanoi (TOH),
Inorder/Preorder/Postorder Tree Traversals, DFS of Graph, etc.

e Recursion uses more memory, because the recursive function adds to the stack with each
recursive call, and keeps the values there until the call is finished.

Recursion

void recursion()
{

int i=0;
(i<=5)
T
L

("Function™);
recursion();
1--;

e Base criteria ?

}
int main() {
("Main");
recursion(); * Progressive approach ?
("Back in Main");

Recursion (Types)

Direct Recursion

e Direct recursion in C occurs when a function calls itself directly from inside. Such
functions are also called direct recursive functions.

Indirect Recursion

* Indirect recursion in C occurs when a function calls another function and if this function
calls the first function again. Such functions are also called indirect recursive functions.

function_01()
{

//some code
function_01();
//some code

}

function_01()
{

//some code
function_02();

} ©)

function_02()
{

//some code
function_01();

Recursion

void recurse { int count)
{
("Count is:
(count)

recurse { count);

1
J

int main() * Try to identify:
{ 1. Errorin Program
recurse (1); 2. Infinite Loop
: 3. Basecriteria ?
4. Progressive approach ?

Recursion (What do you think about these codes?)

1 1

2 void count_to (int count) JAY 2 :u{mid count_to (int count) B
3- { 3

4 ("In recursion: “, count); 4 ("In recursion: ", count);

5 (count) 5 (count)

7 ¢ ("In if statement 1: “, count); 7 ("In if statement 1: ", count);
8 count_to(count+1); 8 count_to(count+1);

9 ("In if statement 2: ", count-1); 9 ("In if statement 2: “, count-1);
10} 10

11} 11}

12 int main() 12 int main()

3 { e |

14 count_to(9); 14 count_to(9);

S ("Main Function \n"); g ("Main Function \n");

16 ; 16 ;

17 '} 17 }

Output A: Output B:

Options:
A. Both Program are same i.e. same output

B. Program A infinite loop
C. Program B infinite loop
D. Program A will run Program B will have a warning

Recursion vs lteration

* Iterative: Use a explicit series of steps to solve a problem using loops and conditional statements or loops to
repeat some part of the code.

* Recursive: Solve a problem by reducing it to a smaller version of itself. Eventually reach a base condition is
reached and the recursion stops or calls itself again to repeat the code

terative Appro_och

MAKE A PILE

OF BOXESH1D
Loo & THROLGH

WHILE THE PILE ISNT
EMPTY

\¢ YOU FIND

A XEYX,
Nou RE DonE!

\F You FIND
A BOR,APD
|T To THE PLLE

OF BoXES

o BACK TP
TE FLLE

Recursive Approach

GO THROLGH
EVERY | TEM

IN THE BoX

\¢ You F\ND

Nou ARE DONEL

(F You FIND
A BOX...

Recursion vs lteration

e When to Use Recursion?

e When to Use Iteration?

Recursion vs lteration

e For issues that can be broken down into several, smaller pieces, recursion is far superior to
iteration. Using recursion in the divide and conquer method can minimize the size of your
problem at each step and take less time than a naive iterative approach.

* |teration can be used to repeatedly execute a set of statements without the overhead of
function calls and without using stack memory. Iteration is faster and more efficient than
recursion.

Recursion vs lteration

Recursion

Iteration

Time Complexity

Very high(generally exponential) time
complexity.

Relatively lower time complexity(generally
polynomial-logarithmic).

Usage
(Time VS Complexity)

If time complexity is not an issue and
shortness of code is, recursion would be the
way to go.

If time complexity is the point of focus, and
number of recursive calls would be large, it is
better to use iteration

Over Head

Because of the overhead of maintaining the
stack, the recursion process is usually slower
than iteration and needs more memory

Iteration consumes less memory, but makes
the code longer which is difficult to read and
write

Infinite Repetition

Infinite recursive calls may lead to system
CPU crash.

Infinite iteration may or may not lead to
system errors, but will surely stop program
execution as memory exhaust.

Recursion vs lteration

(Example using factorial — Which of the following is fast)

| I

L)

int factorial(unsigned int i)

4-{

5 (1<=1)

: {

8 }

9 i*factorial (i-1);

18

11 int main()
12 - {

3 clock_t start_t, end_t;
14 double total_t;

5 int i=5;
16 start_t OF
17 ("%d Factorial is: *, 1, factorial(i));
18 end_t OF
19 total_t = (double)(end_t - start_t) / CLOCKS_PER_SEC;

("\nCPU Cycle/time (Recursive): ", total_t);

>

1

3 int main()

4-

5 clock_t start_t, end_t;

6 double total_t;

7 int i, num=5, factorial=1;

8 start_t 0);

9 (i=1; i<=num; i++)
10 {
11 factorial=factorial®i;
12 T

3 (" Factorial is: ", num, factorial);
14 end_t O
15 total_t = (double)(end_t - start_t) / CLOCKS_PER_SEC;
16 ("\n CPU cycle/time (Iterative): ", total_t);

Will there be difference in time or it will be the same (almost)?

Recursion vs lteration
(Example using Fibonacci Sequence)

The Fibonacci Sequence

e 0,1,1,2,3,5,8,13,21,34,55,89,...
e Each element = sum of two preceding Fibonacci ele-

ments
- (Except for 0 and 1)
e For example, fib(6) = fib(4) + fib(5)

Image Sources: Link, Link

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.shiksha.com%2Fonline-courses%2Farticles%2Ffibonacci-number%2F&psig=AOvVaw2urm-uBgLGVzn64vEUD1pW&ust=1707245841215000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCLi67-rwlIQDFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.smithsonianmag.com%2Fscience-nature%2Ffibonacci-sequence-stock-market-180974487%2F&psig=AOvVaw2urm-uBgLGVzn64vEUD1pW&ust=1707245841215000&source=images&cd=vfe&opi=89978449&ved=2ahUKEwiWnsbA8JSEAxVMhSYFHW5yCdIQjhx6BAgAEBg

B W N e

lteration
(Example using Fibonacci Sequence)

Add integer value to num variable.
Then initialize two variables n1 and n2 with values 0 and 1.
Check if the num value is equal to 1, then print n1 only.

Else
l. Print the value of n1 and n2.

II. Then run a for loop from range(i = 2; i < num; i++) and inside the for loop perform the following
operations.

i. Initialize n3 with value of n1 + n2.
ii. Update nlton2.

iii. Update n2 to n3.

iv. Atlast print n3.

Iteration
(Example using Fibonacci Sequence)

(S

L)

int main(void) {
int num H
int nl , n2 , 1, n3;
clock_t start_t, end_t;
double total_t;
start_t O);
(num==1){
("%d", n1);

o B

(” 3 3 ”J nlJ nz);
(1 3 1 < numjy 1++)q
4 E] nl n2;
nl n2;
n2 n3;

(” s HJn3);

}
}
end_t 0
total t = (double)(end_t - start_t) / CLOCKS_PER_SEC;
("\nCPU Cycle/time (Iteration): AR ENRSH “This is an online implementation so CPU cycles may also depend
on other factures. i.e. internet, server load, location etc.

o vk w e

Recursion
(Example using Fibonacci Sequence)

Add integer value to num.

Then run a for loop from (i = 0; i < num; i++).

In each iteration print and call the fibonacciSeries function with i as a parameter.
In the Recursive function fibonacciSeries,

Check ifi<=1, if itis True then returni

Else return fibonacci(i - 1) + fibonacci(i - 2).

Recursion
(Example using Fibonacci Sequence)

int fibonacci(i)

(fibonacci(i) + fibonacci(i))s

int main(void) {

int num , 1;
clock_t start_t, end_t;
double total_t;
OF
31 < numy 1 ++)q
("%d ", fibonacci(i));

()
total t = (double)(end _t - start_t) / CLOCKS_PER_SEC;
("\nCPU Cycle/time(Recursion): ", total_t);

w M 2

] O un B

Recursion
(Example using Fibonacci Sequence)

int fibonacci(int i)

{

}

(i

i;

(fibonacci(i fibonacci(i))s

int main(void) |{

int num , 13
clock_t start_t, end_t;
double total_t;
0
s 1 < nump 1 ++){
(" ", fibonacci(i));

end_t 0O
total_t = (double)(end_t - start_t)

("\nCPU Cycle/time(Recursion):

CLOCKS_PER_SEC;
", total_t);

Source: Link

*This is an online implementation so CPU cycles may also depend
on other factures. i.e. internet, server load, location etc.

https://www.prepbytes.com/fibonacci-series-program-in-c

Recursion (Memory)

Since recursion is a repetition of a particular process and has so m

much complexity, the stack is maintained in memory to store the
occurrence of each recursive call.

Each recursive call creates an activation record(copy of that method)
in the stack inside the memory when recursion occurs.

Once something is returned or a base case is reached, that
activation record is de-allocated from the stack, and that stack gets
destroyed.

Each recursive call whose copy is stored in a stack stored a different
copy of local variables declared inside that recursive function.

Call Stack

5

Call Stack

[

X

Input Stack

1

2

3

Input Stack

Pop elements from the call stack and

push to bottom of the input stack

2

3

4

5

Call Stack

Call Stack

£y

~

1

Input Stack

Input Stack

~

3

—_

4 2

5 Input Stack

Call Stack

£

Call Stack 2

3

4

5

Input Stack

Source: Link

https://www.scaler.com/topics/c/recursion-in-c/

Recursion (Memory)

int rfunc (int a)

{
(a)

("Digit: , Address:
rfunc(a-1);
}
oo
int main()

{

rfunc(5);

>

 What will be the output ?
* Which element will be at the top and which element will be at the bottom of stack/output?

Recursion (Memory)

1
2 int rfunc (int a)
3~ { ,
., (a) main
6 n 3 countdown
7 /PP E Dlglt nd A?_dr?ff e n 2 countdown
rfunc(a-1); // 3) recursive call is made
} n: 1 countdown
P
int main() n: 0 countdown
: .

rfunc(5); // 1) function call from main

Image source : link

>

1. The first call to the function rfunc() having value a=5 will be a copy on the bottom of the stack, and it is also the copy that will
return at the end.

2. Meanwhile, the rfunc() will call another occurrence of the same function but with 1 subtracted, i.e., a=4.

3. Each time a new occurrence is called, it is stored at the top of the stack, which goes on until the condition is satisfied.

4. As the condition is unsatisfied, i.e., a=0, there will be no further calls, and each function copy stored in the stack will start to
return its respected values, and the function will now terminate.

https://www.google.com/url?sa=i&url=https%3A%2F%2Frunestone.academy%2Fns%2Fbooks%2Fpublished%2Fthinkcpp%2FChapter4%2FStackDiagrams.html&psig=AOvVaw23e2oo4k70Utgwf4aQs0bv&ust=1707320377627000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCPif45aGl4QDFQAAAAAdAAAAABAE

Recursion (Memory)

Call Return
n=3 J /P factorial(3) = 6
! A factorial(3) = 3 = factorial(2)
- - f) aA)=o23 E lall 2
2 int rfunc (int a)) recursive function |
3+ { n=2 d /P factorial(2) = 2 —
bl (a) ' : Activation
= . . record for A
- B factorial(2) = 2 # factorial(1)
° n=1 factorial(1) =1 Activation
record for B
("Digit: , Address: _ _ —
//Print number and 1te add C factorial(1) = 1 = factorial(0) Activation
Pri numbe nd its ¢ _ R | : record for C
rfunc (a y // 3) réecursive cdlLlL 15 made n=>0 I factorial(0) = 1
} Activation
1 . D factorial(0) =1 record for D
int main() | .
{ Recursion termination
r-..F un c () ; i | .__'. 1y _-"‘. 7~ ‘.:_ o _."‘. el I | __'-‘ [ale) _.-:..‘, _.-'_..1] ‘.:_ n {:a) (b)

>

Image source : link

1. The first call to the function rfunc() having value a=5 will be a copy on the bottom of the stack, and it is also the copy that will
return at the end.

2. Meanwhile, the rfunc() will call another occurrence of the same function but with 1 subtracted, i.e., a=4.

Each time a new occurrence is called, it is stored at the top of the stack, which goes on until the condition is satisfied.

4. As the condition is unsatisfied, i.e., a=0, there will be no further calls, and each function copy stored in the stack will start to
return its respected values, and the function will now terminate.

w

https://www.google.com/url?sa=i&url=https%3A%2F%2Fstackoverflow.com%2Fquestions%2F5631447%2Fhow-recursion-works-in-c&psig=AOvVaw0uEDGcet-MSi8rm-tHB0g_&ust=1707326743757000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCLjLp_Kdl4QDFQAAAAAdAAAAABAE

Recursion

* Advantages:

* The code becomes shorter and reduces the unnecessary calling to functions.
* Useful for solving formula-based problems and complex algorithms.
* Useful in Graph and Tree traversal as they are inherently recursive.

* Recursion helps to divide the problem into sub-problems and then solve them, essentially divide and conquer.
* Disadvantages:

* The code becomes hard to understand and analyze.

* Alot of memory is used to hold the copies of recursive functions in the memory.
* Time and Space complexity is increased.

* Recursion is generally slower than iteration.

* Data Structure (Midterm Exam — In person) — Thursday, 29th Feb

Exam will be on Canvas
Attendance is compulsory
Location: NPB 1.226

End of Lecture
Midterm Exams (Reminder)

Timing:
Section Time/ NPB 1.226 |Students
CS 2124-0CA 36734 10:00-10:30 30
C52124-0C1 CS 2124-0CB 36736 10:40-11:10 29
CS 2124-0DA 36738 11:30-12:00 30
C52124-0D4 CS 2124-0DB 36739 12:10-12:40 30
CS 2124-0EA 42879 01:30-02:00 30
52124 -0kl CS 2124-0OEB 42880 02:10-02:40 30

