
4th Lecture (Part – I)

Topics: Recursion

CS 2124: DATA STRUCTURES 
Spring 2024



Topics

• Assignment – 2 (Any Questions)

• Mid-Term Exam (Discussion)

• Recursion

• Recursion (Properties)

• Recursion (Types)

• Recursion vs Iteration

• Example using Factorial

• Example using Fibonacci Sequence

• Recursion (Memory)

• Recursion (Advantages and Disadvantages) 

• Recursion (Real world examples)

• Binary Search (Using Recursion and Iteration)

• Towers of Hanoi



Midterm Exams

• Data Structure (Midterm Exam – In person) – Thursday, 29th Feb 

• Exam will be on Canvas

• Attendance is compulsory 

• Location: NPB 1.226

• Timing: 

Section Time/ NPB 1.226 Students

CS 2124 - 0C1
CS 2124-0CA 36734 10:00 – 10:30 30
CS 2124-0CB 36736 10:40 – 11:10 29

CS 2124 - 0D4
CS 2124-0DA 36738 11:30 – 12:00 30
CS 2124-0DB 36739 12:10 – 12:40 30

CS 2124 - 0E1
CS 2124-0EA 42879 01:30 – 02:00 30
CS 2124-0EB 42880 02:10 – 02:40 30



Recursion 

• Recursion in data structure is when a function calls itself indirectly or directly, and the function
calling itself is known as a recursive function.

• It's generally used when the answer to a larger issue could be depicted in terms of smaller
problems.

• A function is called ‘recursive’ if a statement within the body of a function calls the same
function. Sometimes called ‘circular definition’, recursion is thus the process of defining
something in terms of itself.

• Recursion algorithm are based on divide and conquer principle to conquer problem.



Recursion (Properties)

• A recursive function can go infinite like a loop. To avoid infinite running of recursive function,
there are two properties that a recursive function must have

1. Base criteria − There must be at least one base criteria or condition, such that, when
this condition is met the function stops calling itself recursively.

2. Progressive approach − The recursive calls should progress in such a way that each
time a recursive call is made it comes closer to the base criteria.

• Examples: We can use recursive functions for problems such as Towers of Hanoi (TOH),
Inorder/Preorder/Postorder Tree Traversals, DFS of Graph, etc.

• Recursion uses more memory, because the recursive function adds to the stack with each
recursive call, and keeps the values there until the call is finished.



Recursion

• Base criteria ?

• Progressive approach ?



Recursion (Types)

1. Direct Recursion

• Direct recursion in C occurs when a function calls itself directly from inside. Such
functions are also called direct recursive functions.

2. Indirect Recursion

• Indirect recursion in C occurs when a function calls another function and if this function
calls the first function again. Such functions are also called indirect recursive functions.

• function_01()
• {
• //some code
• function_01();
• //some code
• }

• function_01()
• {
• //some code
• function_02();
• }

• function_02()
• {
• //some code
• function_01();
• }



Recursion 

• Try to identify:
1. Error in Program
2. Infinite Loop
3. Base criteria ?
4. Progressive approach ? 



Recursion (What do you think about these codes?)

Output A: Output B:

A B

Options:
A. Both Program are same i.e. same output
B. Program A infinite loop
C. Program B infinite loop
D. Program A will run Program B will have a warning



Recursion vs Iteration

• Iterative: Use a explicit series of steps to solve a problem using loops and conditional statements or loops to
repeat some part of the code.

• Recursive: Solve a problem by reducing it to a smaller version of itself. Eventually reach a base condition is
reached and the recursion stops or calls itself again to repeat the code



Recursion vs Iteration

• When to Use Recursion?

• When to Use Iteration?



Recursion vs Iteration

• For issues that can be broken down into several, smaller pieces, recursion is far superior to
iteration. Using recursion in the divide and conquer method can minimize the size of your
problem at each step and take less time than a naive iterative approach.

• Iteration can be used to repeatedly execute a set of statements without the overhead of
function calls and without using stack memory. Iteration is faster and more efficient than
recursion.



Recursion vs Iteration

Recursion Iteration

Time Complexity

Usage
(Time VS Complexity)

Over Head

Infinite Repetition

Because of the overhead of maintaining the 
stack, the recursion process is usually slower 

than iteration and needs more memory

Iteration consumes less memory, but makes 
the code longer which is difficult to read and 

write

If time complexity is the point of focus, and 
number of recursive calls would be large, it is 

better to use iteration

If time complexity is not an issue and 
shortness of code is, recursion would be the 

way to go.

Infinite recursive calls may lead to system 
CPU crash.

Infinite iteration may or may not lead to 
system errors, but will surely stop program 

execution as memory exhaust.

Very high(generally exponential) time 
complexity.

Relatively lower time complexity(generally 
polynomial-logarithmic).



Recursion vs Iteration 
(Example using factorial – Which of the following is fast) 

Will there be difference in time or it will be the same (almost)?



Recursion vs Iteration
(Example using Fibonacci Sequence)

Image Sources: Link, Link

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.shiksha.com%2Fonline-courses%2Farticles%2Ffibonacci-number%2F&psig=AOvVaw2urm-uBgLGVzn64vEUD1pW&ust=1707245841215000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCLi67-rwlIQDFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.smithsonianmag.com%2Fscience-nature%2Ffibonacci-sequence-stock-market-180974487%2F&psig=AOvVaw2urm-uBgLGVzn64vEUD1pW&ust=1707245841215000&source=images&cd=vfe&opi=89978449&ved=2ahUKEwiWnsbA8JSEAxVMhSYFHW5yCdIQjhx6BAgAEBg


Recursion vs Iteration
(Example using Fibonacci Sequence)

1. Add integer value to num variable.

2. Then initialize two variables n1 and n2 with values 0 and 1.

3. Check if the num value is equal to 1, then print n1 only.

4. Else

I. Print the value of n1 and n2.

II. Then run a for loop from range(i = 2; i < num; i++) and inside the for loop perform the following 
operations.

i. Initialize n3 with value of n1 + n2.

ii. Update n1 to n2.

iii. Update n2 to n3.

iv. At last print n3.



Recursion vs Iteration
(Example using Fibonacci Sequence)

*This is an online implementation so CPU cycles may also depend 
on other factures. i.e. internet, server load, location etc.



Recursion vs Iteration
(Example using Fibonacci Sequence)

1. Add integer value to num.

2. Then run a for loop from (i = 0; i < num; i++).

3. In each iteration print and call the fibonacciSeries function with i as a parameter.

4. In the Recursive function fibonacciSeries,

5. Check if i <= 1, if it is True then return i

6. Else return fibonacci(i - 1) + fibonacci(i - 2).



Recursion vs Iteration
(Example using Fibonacci Sequence)



Recursion vs Iteration
(Example using Fibonacci Sequence)

Source: Link

*This is an online implementation so CPU cycles may also depend 
on other factures. i.e. internet, server load, location etc.

https://www.prepbytes.com/fibonacci-series-program-in-c


Recursion (Memory)

• Since recursion is a repetition of a particular process and has so
much complexity, the stack is maintained in memory to store the
occurrence of each recursive call.

• Each recursive call creates an activation record(copy of that method)
in the stack inside the memory when recursion occurs.

• Once something is returned or a base case is reached, that
activation record is de-allocated from the stack, and that stack gets
destroyed.

• Each recursive call whose copy is stored in a stack stored a different
copy of local variables declared inside that recursive function.

Source: Link

https://www.scaler.com/topics/c/recursion-in-c/


Recursion (Memory)

• What will be the output ?
• Which element will be at the top and which element will be at the bottom of stack/output?

Recursive function



Recursion (Memory)

1. The first call to the function rfunc() having value a=5 will be a copy on the bottom of the stack, and it is also the copy that will
return at the end.

2. Meanwhile, the rfunc() will call another occurrence of the same function but with 1 subtracted, i.e., a=4.
3. Each time a new occurrence is called, it is stored at the top of the stack, which goes on until the condition is satisfied.
4. As the condition is unsatisfied, i.e., a=0, there will be no further calls, and each function copy stored in the stack will start to

return its respected values, and the function will now terminate.

Image source : link

https://www.google.com/url?sa=i&url=https%3A%2F%2Frunestone.academy%2Fns%2Fbooks%2Fpublished%2Fthinkcpp%2FChapter4%2FStackDiagrams.html&psig=AOvVaw23e2oo4k70Utgwf4aQs0bv&ust=1707320377627000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCPif45aGl4QDFQAAAAAdAAAAABAE


Recursion (Memory)

1. The first call to the function rfunc() having value a=5 will be a copy on the bottom of the stack, and it is also the copy that will
return at the end.

2. Meanwhile, the rfunc() will call another occurrence of the same function but with 1 subtracted, i.e., a=4.
3. Each time a new occurrence is called, it is stored at the top of the stack, which goes on until the condition is satisfied.
4. As the condition is unsatisfied, i.e., a=0, there will be no further calls, and each function copy stored in the stack will start to

return its respected values, and the function will now terminate.

Image source : link

https://www.google.com/url?sa=i&url=https%3A%2F%2Fstackoverflow.com%2Fquestions%2F5631447%2Fhow-recursion-works-in-c&psig=AOvVaw0uEDGcet-MSi8rm-tHB0g_&ust=1707326743757000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCLjLp_Kdl4QDFQAAAAAdAAAAABAE


Recursion

• Advantages:

• The code becomes shorter and reduces the unnecessary calling to functions.

• Useful for solving formula-based problems and complex algorithms.

• Useful in Graph and Tree traversal as they are inherently recursive.

• Recursion helps to divide the problem into sub-problems and then solve them, essentially divide and conquer.

• Disadvantages:

• The code becomes hard to understand and analyze.

• A lot of memory is used to hold the copies of recursive functions in the memory.

• Time and Space complexity is increased.

• Recursion is generally slower than iteration.



End of Lecture
Midterm Exams (Reminder)

• Data Structure (Midterm Exam – In person) – Thursday, 29th Feb 

• Exam will be on Canvas

• Attendance is compulsory 

• Location: NPB 1.226

• Timing: 

Section Time/ NPB 1.226 Students

CS 2124 - 0C1
CS 2124-0CA 36734 10:00 – 10:30 30
CS 2124-0CB 36736 10:40 – 11:10 29

CS 2124 - 0D4
CS 2124-0DA 36738 11:30 – 12:00 30
CS 2124-0DB 36739 12:10 – 12:40 30

CS 2124 - 0E1
CS 2124-0EA 42879 01:30 – 02:00 30
CS 2124-0EB 42880 02:10 – 02:40 30


